

4.5A スイッチング充電制御 IC

MM3659

概要

本 IC は、USB OTG 対応 パワーパス内蔵 4.5A スイッチモード充電制御 IC です。同期整流スイッチング充電制御により、低発熱で高効率な システム駆動と充電制御を同時に行う事が可能です。周辺部品取り込みにより、高価な電流センス抵抗、パワーMOSFET、逆流防止ダイオー ドが不要となり、部品点数削減可能です。また、電源管理・システム駆動・充電制御が1チップで実現できるため、設計工数削減に貢献しま す。

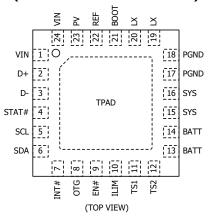
用途

デジタルスチルカメラ,デジタルビデオカメラ,その他モバイル機器

特長

- 1. 高効率 4.5A, 1.5MHz 同期整流スイッチング方式による充 電制御およびシステムパスによる電源管理を実現
- 2. 幅広い入力電圧に対応 (3.9V~17V) 例) USB Power Delivery 5V, 9V, 15V
- 3. USB Battery Charging Spec.1.2 に準拠し、100mA~ 3000mA までの入力カレントリミットを設定可能
- 4. 5V/1.3A の USB OTG 機能を内蔵し、外部機器への電源供 給が可能
- 5. I2C 通信により最適なカスタマイズが可能 例) 充電電圧/充電電流/充電タイマー他

主な仕様


項目	仕様	単位
定格電圧 (VIN)	22.0	V
動作電圧範囲 (VIN)	3.9~17.0	٧
入力カレントリミット	100 - 3000	mA
スイッチング周波数	1.5	MHz
CV 制御電圧	3.50 - 4.40	٧
急速充電電流	512 - 4544	mA
予備充電電流	128 - 2048	mA
急速充電開始電圧	2.8 -3.0	٧
充電完了電流	128 - 2048	mA
サーマルレギュレーション温度	60 - 120	Ç
充電タイマー	5 - 20	Hour

応用回路例

MM3659CR USB Connector 1.0uH VBUS VIN LX System TI TM ≨353Ω (1.5A) TuF D+ 40uF GND [BOOT SYS BATT Li-ion Battery T 10uF 10uF REF pull-up C 7SCI **≥**3.9kΩ SDA TS₁ EN# MCII TS2 OTG (System) PGND STAT# **≤**33kΩ NTC(10kΩ) INT#

パッケージ

SQFN-24 (4.0mm x 4.0mm x 0.75mm)

Jun, 2022 Rev.0

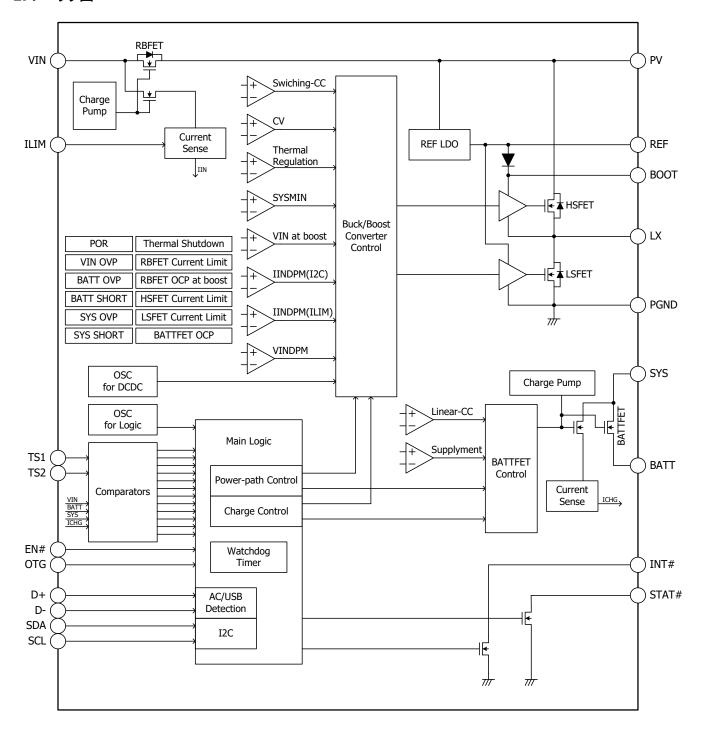
ミツミ お問い合わせ

https://mtm-sec.mitsumi.co.jp/web/ic/

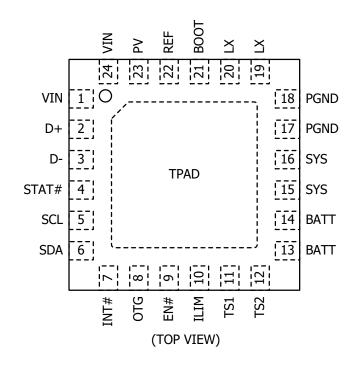
ミツミ電機株式会社

半導体事業部 戦略技術部

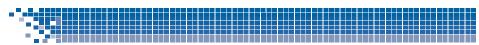
tel:046-230-3470


- 本リーフレットに配像の会社名・社名ロゴ・商品名・製品名・サービス名等は、各社・各団体の商業をたは登録商業です。
 記載された製品は改良などにより、外種及び記載客項の一部を予告なく変更することがあります。
 記載内容は実際にご在文される時点での個別の製品の仕様を保証するものではありませんので、ご使用にあたりましては、必ず製品仕機害・製品規格をご請求の上、確認して頂きますようお願い致します。

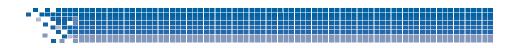
1



1. ブロック図


2. 端子配置

3. 端子説明


端子番号	ピン名称	端子説明
1,24	VIN	充電用電源入力。
2	D+	USBバスD+入力。USBバッテリー充電仕様(BCS)1.2のdata contact detection(DCD)とprimary detectionに沿った、USBホスト/充電ポートの判別を行います。
3	D-	USBバスD-入力。USBバッテリー充電仕様(BCS)1.2のdata contact detection(DCD)とprimary detectionに沿った、USBホスト/充電ポートの判別を行います。
4	STAT#	充電状態インジケータ。NchMOSオープンドレイン出力。充電中に"L"出力。異常発生時、1Hzで点滅。
5	SCL	I2Cクロック入力端子。
6	SDA	I2Cデータ入出力端子。
7	INT#	割り込み信号出力端子。NchMOSオープンドレイン出力。割り込み要因発生時、256µs間"L"のパルスを出力。
8	OTG	降圧DCDCモードでは、USB電流リミット値選択端子。それ以外では、アクティブ・ハイのOTG動作イネーブル端子。"H/L"入力。
9	EN#	アクティブ・ローの充電イネーブル端子。"H/L"入力。
10	ILIM	入力電流制限設定端子。抵抗をPGND端子との間に接続。
11	TS1	サーミスタ温度検出端子1。NTCサーミスタ端子を接続。
12	TS2	サーミスタ温度検出端子2。NTCサーミスタ端子を接続。
13,14	BATT	電池接続端子。電池への充電及びSYS端子への放電を行います。
15,16	SYS	システム接続端子。システム用電源を出力。
17,18	PGND	パワーグラウンド端子。

端子番号	ピン名称	端子説明
19,20	LX	DCDCコンバータ用インダクタ接続端子。また、ブートストラップ容量47nFをBOOT端子との間に接続。
21	воот	HSFETドライブ用電源。ブートストラップ容量47nFをLX端子との間に接続。
22	REF	LSFETドライブ用電源。また、サーミスタ用基準電圧出力端子。抵抗を経由してTS1/TS2端子に接続。LSFETドライブ用電源。
23	PV	入力バイパス容量の接続端子。セラミックコンデンサをPGND端子との間に接続し、可能な限りIC の近くに配置して下さい。
Expose pad	TPAD	放熱用PAD。基板グランドプレーンへの接続を推奨します。

4. 絶対最大定格

(特記なき場合: Ta=25°C)

	記号	最小	最大	単位	
保存温度		Tstg	-65	150	°C
接合温度	Тјмах	-40	150	°C	
	VIN, PV	Vin _{MAX1}	-0.3	22	V
	STAT#	Vin _{MAX2}	-0.3	20	V
	BOOT(*1)	Vin _{MAX3}	-0.3	26	V
 入力電圧	LX(*1)	Vin _{MAX4}	-0.3	20	V
	BATT, SYS	Vin _{MAX5}	-0.3	6	V
	BOOT to LX Pin Voltage(*1)	Vin _{MAX6}	-6	-0.3	V
	SDA, SCL, INT#, OTG, ILIM, REF, TS1, TS2, EN#, D+, D-	Vin _{MAX7}	-0.3	6	V
シンク電流	STAT#, INT#	Isink _{MAX}	-	10	mA
許容損失	基板実装時(*2)	Pd	-	4.8	W

^(*1) 固有スイッチングによるスパイクノイズ電圧でも、BOOT 端子とLX 端子の絶対最大定格を超えてはいけません。

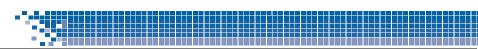
5. 推奨動作範囲


(特記なき場合: Ta=25°C)

(1948-0-294-1-16-20-0)				
項目	記号	最小	最大	単位
動作周囲温度(*3)	Topr	-40	85	°C
接合温度	Tj	-40	125	°C
VIN 端子電圧	$V_{ m VIN}$	3.9	17	V
VIN 端子電流	$I_{ m VIN}$	-	3	А
降圧 DCDC 出力電流(システム負荷+充電電流)	I _{TOTAL_LOAD}	-	4.5	А
BATT 端子電圧	V _{BATT}	-	4.4	V
BATT 端子電流	I _{BATT}	-	4.5	Α

^(*3) 基板サイズ : 70mm × 70mm × 1.0mm 材質 : ガラスエポキシ 層数 : 4 層 配線率 : 90%

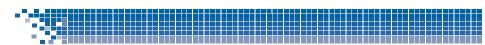
^(*2) 基板サイズ : 70mm × 70mm × 1.0mm 材質 : ガラスエポキシ 層数 : 4 層 配線率 : 90%



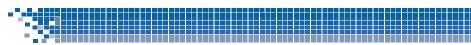
6. 電気的特性

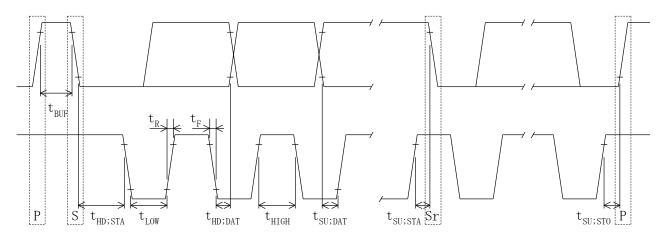
(特記なき場合: $V_{VIN_UVLOZ} < V_{VIN} < V_{ACOV}$ and $V_{VIN} > V_{BATT} + V_{INDET}$, Ta = 25°C)

項目	記号	条件	最小	標準	最大	単位
電源入力						
	I _{BATT_LEAK}	V _{VIN} < V _{VIN_UVLOZ} , V _{BATT} = 4.2V, leakage between BATT and VIN	-	-	5	μΑ
電池消費電流(BATT,LX,SYS)	I _{BATT_SHIP}	High-Z State, or no VIN, BATTFET disabled (REG07[5] = 1), SDA = SCL = "L"	-	12	20	μΑ
	I _{BATT_DISCHG}	High-Z State, or no VIN, REG07[5] = 0	-	55	85	μΑ
	I _{BATT_BOOST}	V_{BATT} =4.2V, Boost mode, I_{VIN} = 0, converter switching	-	4	-	mA
	I _{VIN_HIZ1}	V _{VIN} = 5V, High-Z state	-	30	60	μA
	$I_{ extsf{VIN_HIZ2}}$	V _{VIN} = 15V, High-Z state	-	60	100	μA
	I_{VIN1}	V _{VIN} > V _{UVLO} , V _{VIN} > V _{BATT} , converter not switching	-	1.5	3	mA
VIN 消費電流	I _{VIN2}	$\label{eq:VVIN} \begin{split} V_{\text{VIN}} &> V_{\text{UVLO}}, V_{\text{VIN}} > V_{\text{BATT}}, \\ &\text{converter switching, } V_{\text{BATT}} {=} 3.2 V, \\ I_{\text{SYS}} {=} 0 \end{split}$	ı	2	ı	mA
	I _{VIN3}	$\begin{aligned} &V_{\text{VIN}} > V_{\text{UVLO}}, V_{\text{VIN}} > V_{\text{BATT}}, \\ &\text{converter switching, V}_{\text{BATT}} = 3.8V, \\ &I_{\text{SYS}} = 0 \end{aligned}$	-	15	-	mA
VIN I2C 通信動作範囲(BATT なし)	V _{VIN_UVLOZ}	V _{VIN} rising	3.6	-	-	V
入力電源検出電圧	V _{INDET}	V _{VIN} rising, V _{VIN} -V _{BATT}	170	250	300	mV
入力電源検出復帰電圧	V_{INDETZ}	V _{VIN} falling, V _{VIN} -V _{BATT}	35	80	120	mV
電源過電圧検出電圧	V_{ACOV}	V _{VIN} rising	17.4	18	-	V
電源過電圧検出電圧ヒステリシス	V _{ACOV_HYS}	V _{VIN} falling	-	700	ı	mV
BATT I2C 通信動作範囲(VIN なし)	V _{BATT_UVLOZ}	V _{BATT} rising	2.3	-	-	٧
電池過放電検出電圧	V _{BATT_DPL}	V _{BATT} falling	-	2.4	2.6	V
電池過放電検出電圧ヒステリシス	V _{BATT_DPL_HYS}	V _{BATT} rising	-	170	230	mV
不良電源検出電圧	V_{VINMIN}	V _{VIN} falling	-	3.7	-	V
不良電源検出電流	I _{BADSRC}		-	30	-	mA
不良電源検出時間	t _{BADSRC}		-	30	-	ms
不良電源検出繰り返し時間	t _{BADCYC}		-	2	-	sec
パワーパス・バッテリーパス						
逆流防止 FET ON 抵抗	R _{ON_RBFET}	REG00[2:0]=100 Measured between VIN and PV	-	65	-	mΩ
ハイサイドスイッチング FET ON 抵抗	R _{ON_HSFET}		-	50	-	mΩ
ローサイドスイッチング FET ON 抵抗	Ron_lsfet		-	55	-	mΩ
バッテリーパス ON 抵抗	Ron_battfet		-	15	18	mΩ
システム電力管理						
SYS レギュレーション電圧 1	V _{SYS_REG1}	BATTFET OFF, V _{BATT} < V _{SYS_MIN}	-	V _{SYS_MIN} +100	-	mV
SYS レギュレーション電圧 2	V _{SYS_REG2}	BATTFET OFF, V _{BATT} > V _{SYS_MIN}	-	V _{BATT} +100	-	mV
最小 SYS 出力 DC 電圧	V _{SYS_REGMIN}	V _{BATT} = 0 V, REG01[3:1]=101, V _{SYS_MIN} = 3.5 V	3.5	3.6	-	٧
最大 SYS 出力 DC 電圧	Vsys_regmax	V _{BATT} = 4.35 V	-	4.45	4.55	V
バッテリーサポート電圧	V _{SUP}	BATT discharge current 10mA, $V_{SYS} = V_{BATT} - V_{SUP}$ in Battery support mode	-	30	-	mV
バッテリーサポート開始電圧	V _{SYS_BATT}	Battery support function start when V _{SYS} < V _{BATT} - V _{SYS_BATT}	-	90	-	mV
電池充電制御						
トリクル充電電流	$I_{BATTSHORT}$	V _{BATT} < V _{SHORT}	-	85	-	mA

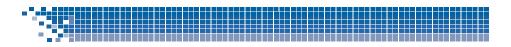


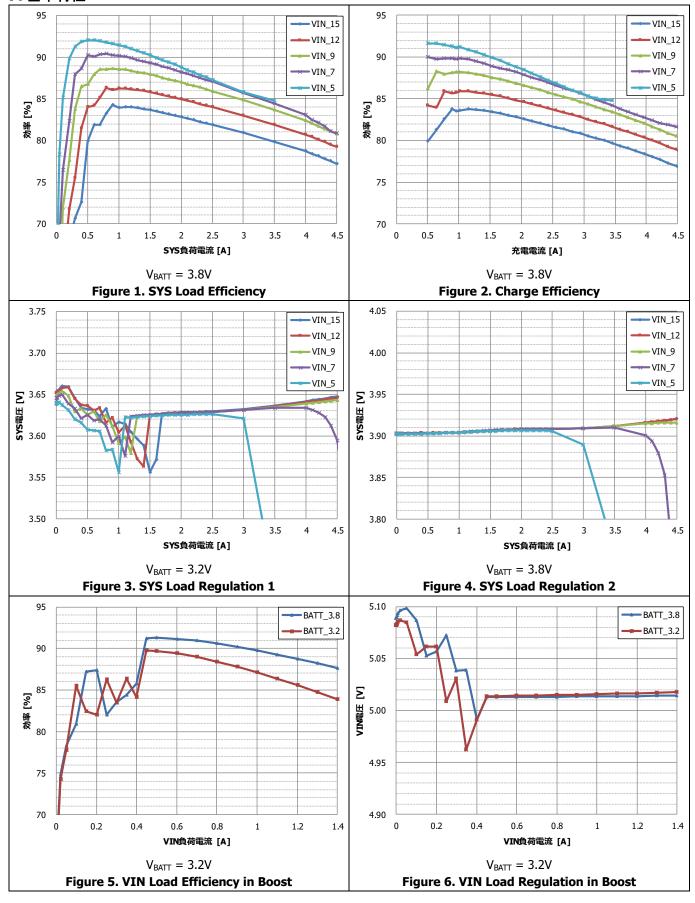
項目	記号	条件	最小	標準	最大	単位
予備充電電流精度	IPRECHG ACC	$V_{BATT} = 2.6V$, $I_{PRECHG} = 256mA$	-20	-	20	%
急速充電電流精度	I _{CHG} ACC	$V_{BATT} = 3.8V, I_{CHG} = 1792mA$	-5	-	5	%
充電電流削減オプション有効時充電電流	I _{CHG_50pct}	REG09[2:0] = 011 or REG02[0] = 1	-	I _{СНG} х50	-	%
	I _{EOC_ACC1}	I _{EOC} = 128mA, I _{CHG} = 960mA	-40	-	40	%
満充電検出電流精度 	I _{EOC_ACC2}	I _{EOC} = 256mA, I _{CHG} = 960mA	-20	-	20	%
800mA 充電電流検出	I _{TERM_800MA}		-	800	-	mA
電池短絡検出電圧	VBATTSHORT	V _{BATT} falling	-	2.0	-	٧
電池短絡検出電圧ヒステリシス	V _{BATTSHORT_HYS}	V _{BATT} rising	-	200	-	mV
電池低電圧検出電圧	V _{BATTLOWV}	V _{BATT} falling, REG04[1] = 1	2.6	2.8	2.9	٧
電池低電圧検出電圧ヒステリシス	V _{BATTLOWV_HYS}	V _{BATT} rising, REG04[1] = 1	-	200	-	mV
定電圧制御電圧精度	V _{BATTREG_ACC}	V _{BATTREG} = 4.304V	-0.5	-	0.5	%
高温時定電圧制御電圧	V _{BATTREG_WARM}	REG09[2:0] = 100	-	V _{BATTREG} -160	-	mV
再充電検出電圧	V_{RECHG}	V _{BATT} falling, REG04[0] = 1	-	300	-	mV
再充電検出デグリッチ時間	t _{RECHG}	V _{BATT} falling, REG04[0] = 1	-	20	-	ms
VIN 電圧・電流レギュレーション	•					
入力電圧レギュレーション精度	V _{VINDPM_ACC}		-2	_	2	%
	I _{IINDPM1}	USB100	85	-	100	mA
	I _{IINDPM2}	USB150	125	-	150	mA
USB 入力カレントリミット	I _{IINDPM3}	USB500	440	-	500	mA
	$I_{IINDPM4}$	USB900	750	-	900	mA
	I _{IINDPM5}	Input current limit 1.2A	1	-	1.2	Α
 入力カレントリミット	I _{IINDPM6}	Input current limit 1.5A	1.3	-	1.5	Α
人がカレントウミット	I _{IINDPM7}	Input current limit 2A	1.7	-	2	Α
	I_{IINDPM8}	Input current limit 3A	2.6	-	3	Α
SYS 起動時入力カレントリミット	Ivin_start	Vsys < Vsys_start	-	100	-	mA
SYS 起動検出電圧	V _{SYS_START}	V _{SYS} rising	-	2.2	-	V
ILIM 設定定数	K _{ILIM}	$I_{IN} = K_{ILIM}/R_{ILIM}, I_{INDPM} = 1.5A$	440	485	530	ΑχΩ
ILIM レギュレーション電圧	V_{ILIM}		-	1	-	V
入力電源判別						
D+ 検出値 for DCD	V _{DAT_REF_DCD}		0.7	-	0.8	V
D+ クランプ電圧 for DCD	V _{LGC_HI}		2	-	3.6	V
D+ 電流源 for DCD	I_{DP_SRC}		7	-	13	μΑ
D- プルダウン抵抗 for DCD	R _{DM_DWN}		14.25	-	24.8	kΩ
DCD タイムアウト	t DCDOUT		-	500	-	ms
DCD デグリッチタイム	t _{DCD}		-	40	-	ms
D- 検出値 for Primary detection	V _{DAT_REF_PRID}		0.25	-	0.4	V
D+ 電圧源 for Primary detection	V_{DP_SRC}		0.5	-	0.7	V
D- シンク電流 for Primary detection	I_{DM_SINK}		25	-	175	μΑ
Primary detection デグリッチタイム	t _{PRID}		-	40	-	ms
100mA USB ホスト時 充電タイマー	t _{SDP_DEFAULT}	Default mode	-	-	45	min
D+/D-端子リーク電流	I_{D_LKG}	D+/D- switch open	-1	-	1	μA
Good-Battery 検出電圧	V _{BATTGD}	V _{BATT} rising	3.4	3.55	3.7	V
Good-Battery 検出電圧ヒステリシス	V _{BATTGD_HYS}	V _{BATT} falling	-	100	-	mV
BATT·SYS 保護						
電池過電圧検出電圧	VBATTOVP	V _{BATT} rising, as percentage of V _{BATTREG}	-	104	-	%
電池過電圧検出電圧ヒステリシス	V _{BATTOVP_HYS}	V_{BATT} falling, as percentage of V_{BATTREG}	-	2	-	%

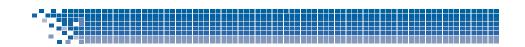

Tun 2022 Rev 0 7

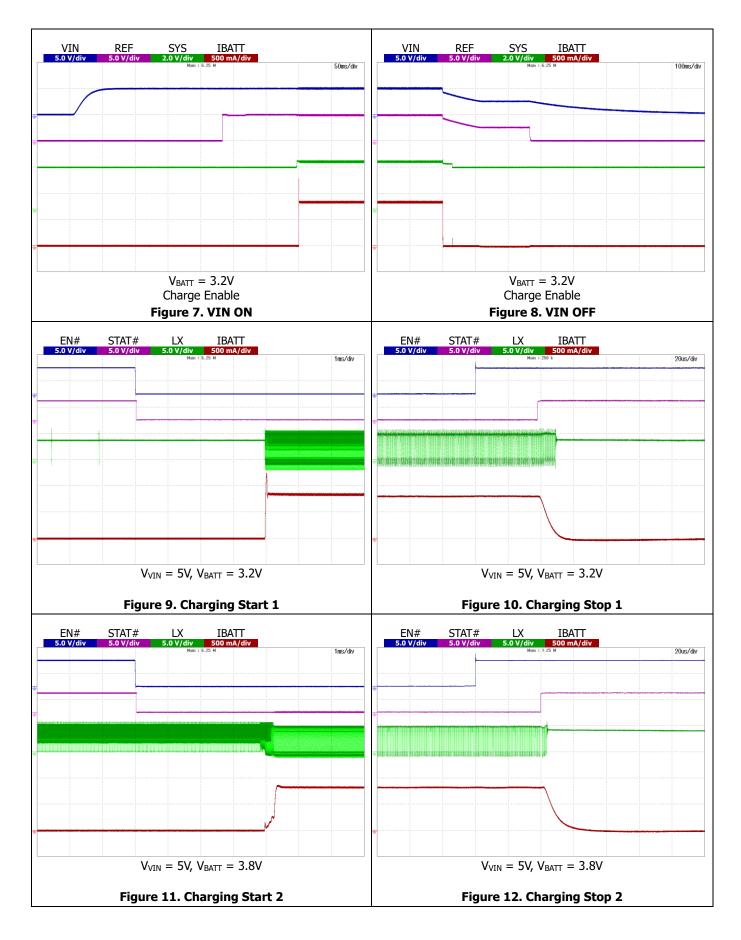


項目	記号	条件	最小	標準	最大	単位	
電池過電圧検出デグリッチタイム	t battovp		-	1	-	μs	
BATTFET 過電流検出電流	I _{BATTFET_OCP}		9	-	-	Α	
SYS 過電圧検出電圧	V _{SYSOVP}		ı	400	ı	mV	
SYS 過電圧検出電圧(スイッチング充電中)	V_{SYSOVP_SW}		-	650	-	mV	
SYS シンク電流	I _{SYSSINK}		-	30	-	mA	
サーマルレギュレーション・サーマルシャットダウン							
サーマルレギュレーション温度	T _{Junction_REG}	REG06[1:0] = 11	-	120	-	°C	
サーマルシャットダウン温度	T _{SHUT}	Temperature increasing	-	160	-	°C	
サーマルシャットダウンヒステリシス	T _{SHUT_HYS}		-	30	-	°C	
サーマルシャットダウン検出デグリッチタイム	t _{TSD}		-	1	-	ms	
電池温度検出							
T1 温度検出 TS1 端子電圧	V _{T1}	As Percentage to V _{REF}	78.5	79.2	79.9	%	
T1R 温度検出 TS1 端子電圧	V_{T1R}	As Percentage to V _{REF}	-	77.2	-	%	
T2 温度検出 TS2 端子電圧	V_{T2}	As Percentage to V _{REF}	74.0	74.9	75.8	%	
T2R 温度検出 TS2 端子電圧	V_{T2R}	As Percentage to V _{REF}	-	72.3	-	%	
T3R 温度検出 TS2 端子電圧	V_{T3R}	As Percentage to V _{REF}	-	56.0	-	%	
T3 温度検出 TS2 端子電圧	V _{T3}	As Percentage to V _{REF}	50.9	52.3	53.7	%	
T4R 温度検出 TS1 端子電圧	V_{T4R}	As Percentage to V _{REF}	-	45.1	-	%	
T4 温度検出 TS1 端子電圧	V_{T4}	As Percentage to V _{REF}	40.3	41.6	42.9	%	
電池温度検出デグリッチタイム	t _{TS}	$V_{TS1} > V_{T1}$, or $V_{TS2} > V_{T2}$, or $V_{TS2} < V_{T3}$, or $V_{TS1} < V_{T4}$	-	10	-	ms	
DCDC コンバータ							
スイッチング周波数	f _{LX}		1300	1500	1700	kHz	
最大 ON デューティ比	D _{MAX}		-	97	-	%	
ブートストラップ・リフレッシュ検出	V _{BOOT_REFRESH}	V _{BOOT} -V _{LX} when LSFET refresh pulse is requested, V _{IN} =5V	-	3	-	٧	
DCDC コンバータ 降圧動作							
HSFET 過電流検出電流	I _{HSFET_OCP}		6	7.5	-	Α	
LSFET 低電流検出電流	I _{LSFET_UCP}	From sync mode to non-sync mode	-	100	-	mA	
DCDC コンバータ 昇圧動作							
昇圧動作時 電池低電圧検出電圧	V _{OTGBTLV}	V _{BATT} falling	3.1	3.2	3.3	V	
昇圧動作時 電池低電圧検出電圧ヒステリシス	Votgbtlv_hys	V _{BATT} rising	-	200	-	mV	
昇圧 DCDC 出力電圧	V _{BOOST_REG}	$I_{VIN} = 0$	4.9	5.0	5.1	V	
昇圧 DCDC 電流能力	I _{BOOST1}	REG01[0] = 0	0.5	-	-	Α	
	I _{BOOST2}	REG01[0] = 1	1.3	-	-	Α	
昇圧 DCDC 出力過電圧検出電圧	V _{BOOST_OVP}		-	5.3	5.5	V	
LSFET 過電流検出電流	I _{LSFET_OCP}		3.2	4.6	-	Α	
HSFET 低電流検出電流	I _{HSFET_UCP}		-	100	-	mA	
RBFET 過電流検出電流	I _{RBFET_OCP1}	REG01[0] = 0	0.6	1.0	1.4	A	
	I _{RBFET_OCP2}	REG01[0] = 1	1.4	1.8	2.2	Α	
REFLDO		V 40V T 40 A	4.0	L = 2			
REFLDO 出力電圧	V _{REF1}	$V_{VIN} = 10V$, $I_{REF} = 40$ mA $V_{VIN} = 5V$, $I_{REF} = 20$ mA	4.8 4.75	5.2 4.85	5.5 -	V	
REFLDO 電流能力	I _{REF}	$V_{VIN} = 3V$, $V_{REF} = 2.8V$	50	-	-	mA	
REFLDO 起動遅延時間	t _{REFDELAY}	,	-	220	-	ms	
ロジック入出力 (INT#, OTG, EN#, STAT				1			
入力電圧 L	V _{ILO}		-	-	0.4	٧	
入力電圧 H	V _{IHI}		1.3	-	-	V	
	<u> </u>	I .		1			

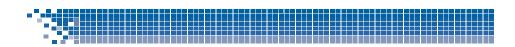

MITSUMI


項目	記号条件		最小	標準	最大	単位
オープンドレイン端子シンク時電圧	V _{OUT_LO}	Sink current = 5mA when pin="L"	-	-	0.4	V
入力リーク電流	I_{BIAS}	Pull up rail 1.8V	-	-	1	μA
デジタルクロック 及び タイマー						
クロック周波数	f _{CLK}		35	70	105	kHz
タイマー精度	ttimer_acc	watchdog timer, charging safety timer, STAT# blinking cycle	-15	-	15	%
INT# 出力パルス幅	t _{INT}		-	256	ı	μs
I ² C インターフェース(SDA, SCL)						
入力電圧 L	V _{IL}	VPULL-UP = 1.8V, SDA and SCL	-	-	0.4	V
入力電圧 H	V_{IH}	VPULL-UP = 1.8V, SDA and SCL	1.3	-	-	V
SDA 出力ローレベル電圧	Vol	Sink current = 5 mA	-	-	0.4	V
ハイレベル時入力電流	I _{BIAS}	VPULL-UP = 1.8V, SDA and SCL	-	-	1	μA
クロック周波数	f _{SCL}		-	-	400	kHz
データ転送待ち時間	t _{BUF}		1.3	-	ı	μs
SCL スタートホールド時間	t _{HD;STA}		0.6	-	-	μs
SCL ローレベルホールド時間	t _{LOW}		1.3	-	ı	μs
SCL ハイレベルホールド時間	t _{HIGH}		0.6	-	-	μs
開始条件セットアップ時間	t _{su;sta}		0.6	-	ı	μs
SDA データホールド時間	t _{HD;DAT}		0	-	ı	μs
SDA データセットアップ時間	t _{SU;DAT}		100	-	-	ns
SDA,SCL 立ち上がり時間	t _R		-	-	300	ns
SDA,SCL 立ち下がり時間	t⊧		-	-	300	ns
停止条件セットアップ時間	t _{su;sto}		0.6	-	-	μs





7. 基本特性



8. 機能説明

MM3659は、「USB OTG対応 パワーパス内蔵4.5Aスイッチモード充電制御IC」です。入力逆流防止FET(RBFET)、ハイサイドスイッチング FET(HSFET)、ローサイドスイッチング FET(LSFET)、バッテリーFET(BATTFET)の4つのパワートランジスタを内蔵しており、HSFETを駆動 する為のブートストラップダイオードも内蔵しています。また、内部レギュレータとしてREFLDOを内蔵しており、多くの内部回路の電源となっている他、REF端子から出力しており、サーミスタを用いた電池温度検出に使用します。

8-1. パワーオンリセット

メインロジックなどのいくつかの内部回路は、入力電源(VIN端子)と電池(BATT端子)で高い方の電圧で動作します。いずれかの電圧が I2C通信動作範囲(= V_{VIN_UVLOZ} or V_{BATT_UVLOZ})に入ると、I2C通信が可能な状態になります。この時、I2Cレジスタはデフォルト値にリセット されます。なおI2Cレジスタは、I2C Reset(REG01[7])に"1"を書き込むことでも、デフォルト値にリセットされます。

8-2. デフォルトモード、ホストモード

MM3659はウォッチドッグタイマーを内蔵しています。タイマー時間はWATCHDOG(REG05[5:4])で設定できます。

ウォッチドッグタイマーが動作している状態をホストモードと呼び、WD_FAULT(REG09[7])が"0"になります。 ウォッチドッグタイマーがタイムアップしている状態をデフォルトモードと呼び、WD_FAULT(REG09[7])は"1"になります。

POR後、MM3659はデフォルトモードで起動します。デフォルトモード中に何かしらのI2C書き込みを行うとホストモードになります。ホストモードになるとウォッチドッグタイマーが動作を始め、ウォッチドッグタイマーがタイムアップするとデフォルトモードに戻ります。ホストモードを維持する為には、ウォッチドッグタイマーがタイムアップする前にWDT Reset(REG01[6])に"1"にするか、WATCHDOG(REG05[5:4])を"00"にしてウォッチドッグタイマーを無効にします。なお、WDT Reset(REG01[6])は自動的に"0"に戻ります。

基本的に、MM3659はI2Cマスタによって制御されるICですが、I2Cマスタが存在しない状態や電池電圧が低くI2Cマスタが起動できないような状態においても、デフォルトモードとして充電動作を行うことが可能です。

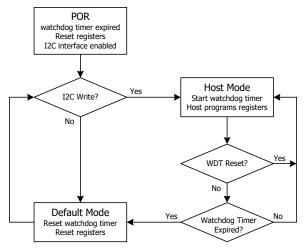


Figure 13. Watchdog Timer Flow Chart

8-3. MM3659 起動シーケンス

MM3659の起動シーケンスは、「電池(BATT)による起動」と「入力電源(VIN)による起動」の2種類に分けられます。

8-3-1. 電池(BATT)による起動

入力電源が未接続で、電池過放電検出電圧(=V_{BATT_DPL})以上の電池が接続されると、BATTFETをONして電池からシステムへ電力を供給します。この時REFLDOは停止しており、電池からの消費電流を抑えます。また、電池のみで起動している時にOTG起動条件を満たすことで、昇圧モードへ遷移します。

BATTFET 強制 OFF

BATTFET_Disable(REG07[5])を"1"にすると、BATTFETを強制的にOFFすることができます。BATTFET強制OFFの時は、電池の充電及び放電が行われません。

輸送モード

入力電源が未接続の時にBATTFET強制OFFかつSDA=SCL="L"にすると、輸送モードに入りシステムへの電力供給は行われません。

この時、電池からの消費電流を最小限に抑えます。同時にウォッチドッグタイマーを無効化することで、永続的に消費電流を最小限に抑えることが可能です。これによって、セット組み立て後の輸送中など、実際にセットを動作させるまでの間の電池放電を最小限に抑えます。輸送モードになった後、入力電源を接続することで、BATTFET強制OFFは解除され、輸送モードも解除されます。

電池放電過電流保護 (BATTFETOCP)

SYS端子が地絡するなど、BATTFETに流れる放電電流がBATTFET過電流検出電流(=I_{BATTFET_OCP})を上回った時、BATTFETをラッチ OFFさせます。ラッチOFFを解除する為には、入力電源の抜き差しが必要です。

8-3-2. 入力電源(VIN)による起動

入力電源を接続すると「REFLDO起動」「不良アダプタ検出」「入力電源判別」の3段階のステップを踏んだ後、降圧DCDCコンバータが起動し、システムへ電力を供給します。充電条件が成立している場合、同時に充電動作も行います。

REFLDO 起動

入力電源を接続すると、まず内部レギュレータであるREFLDOが起動します。REFLDOはDCDCコンバータなど多くの内部回路の電源です。REFLDOの起動条件は下記の通りです。

- ・VIN電圧がI2C通信動作範囲にある (VIN>V_{VIN UVLOZ})
- ・VIN電圧がBATT電圧より高い (VIN>BATT+V_{INDET})
- ・上記2条件を220msec維持する

不良アダプタ検出

REFLDOが起動後、入力電源が不良アダプタではないことを確認する検出動作を行います。正常アダプタと判定される条件は、下記の通りです。

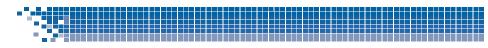
- ・入力電源が不良アダプタ検出電流(=I_{BADSRC})以上の電流能力がある
- ・VIN電圧がVIN過電圧検出電圧より低い (VIN<VACOV)

入力電源の電流能力は、不良アダプタ検出電流(= I_{BADSRC})を不良アダプタ検出時間(= t_{BADSRC})の間引き込み、不良アダプタ検出電圧 (= V_{VINMIN})を下回らないことで確認します。電流能力不足で不良アダプタと判定された場合は、2sec毎に電流能力確認動作を繰り返します。

正常アダプタと判定されると、INT#割り込み信号を出力し、PG_STAT(REG08[2])を"1"にします。

入力電源判別

入力電源が正常アダプタと判定された後、入力電源判別を行い入力カレントリミット値の初期値を決定します。入力電源判別が完了すると、INT#割り込み信号を出力し、DCDCコンバータが起動します。


MM3659は、USBのD+/D-端子を利用し、Battery Charging Specification1.2(BCS1.2)のPrimary Detectionまでに対応した入力電源判別を行います。D+/D-端子による判別は、Data Contact Detect(DCD)とPrimary Detectionの2段階のステップがあります。

DCDは、D+/D-端子の接続を検出するステップです。DCDの時の内部回路はFigure 14のようになっており、DCDデグリッチタイム (= t_{DCD})の間、D+端子がLowを維持するとD+/D-端子が接続されたと判断し、次のステップに移ります。接続検出がされないまま、 DCDタイムアウト(= t_{DCDOUT})時間が経過すると、次のステップに移らずに入力電源判別は終了します。

Primary Detectionは、「Standard Down Stream Port(SDP)」と「Dedicated Charging Port(DCP)/Charging Down Stream Port(CDP)」の2種類に区別するステップです。Primary Detectionの時の内部回路はFigure 15のようになっており、Primary detection デグリッチタイム(=t_{PRID})経過後にD-端子がLowならばSDP(=USB Host)と判別し、HighならばDCP/CDP(=Charging Port)と判別します。

以上の判別結果とOTG端子の論理によって入力カレントリミットの初期値が決定します。また、VIN_STAT(REG08[7:6])に判別結果を表示します(Table 1)。

MITSUMI

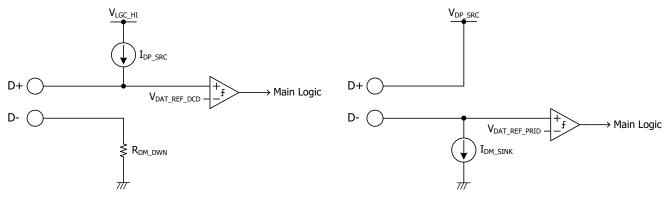


Figure 14. Block Diagram in DCD

Figure 15. Block Diagram in Primary detection

Table 1. USB D+/D- Detection

D+/D- DETECTION	отб	INPUT CURRENT LIMIT	REG08[7:6]
0.5 sec timer expired in DCD (D+/D- floating)	-	100mA	00
USB Host	Low	100mA	01
USB Host	High	500mA	01
Charging Port	-	1.5A	10

HiZステート

入力電源判別の結果、入力カレントリミットが100mAに設定され、かつBATT電圧がGood-Battery検出電圧(=V_{BATTGD})を上回っていると、HiZステートへ遷移します。HiZステートになると、REFLDOとDCDCコンバータを停止し、電池からシステムへ電力を供給するようになります。

HiZステートへ遷移後、EN_HIZ(REG00[7])を"0"にするか入力電源を抜去することでHiZステートから解除されます。入力電源を抜去してHiZステートを解除した場合、EN_HIZ(REG00[7])は自動的に"0"になります。

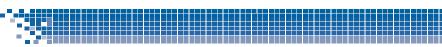
なお、EN_HIZ(REG00[7])を"1"にすることでも、HiZステートへ遷移することが出来ます。

強制入力電源判別

DPDM_EN(REG07[7])を"1"にすると、入力電源判別を強制的に行うことが出来ます。入力電源判別が完了後、DPDM_EN(REG07[7]) は自動的に"0"に戻ります。強制入力電源判別で行った時は、その結果によってHiZステートに遷移することはありません。

入力カレントリミット値

入力電源判別の結果によって入力カレントリミットの初期値が決定され、IINDPM(REG00[2:0])に反映されます。入力カレントリミット値はI2Cで変更することが可能です。入力カレントリミット値が900mA以下(IINDPM[2:0]=000~011)に設定された場合は、電流検出精度を上げる為にRBFETのON抵抗を大きくします。


また入力カレントリミットは、ILIM~PGND端子間に接続する抵抗によってクランプを掛けることが可能です。ILIM端子によるクランプ値は下記計算式で求められます。実際の入力カレントリミット値は、IINDPM(REG00[2:0])とクランプ値(I_{ILIM})の小さい方になります。

$$I_{ILIM} = \frac{1V}{R_{ILIM}} \times K_{ILIM}$$

なお、ILIM端子の電圧を確認することで、入力電流を簡易的に把握することが出来ます。ILIM端子電圧から入力電流を求める計算式 は下記の通りです。ILIM端子電圧が1Vを上回っている時は、DPM機能が動作している状態になります。

$$I_{VIN} = \frac{V_{ILIM}}{1V} \times I_{ILIM}$$

8-3-3. 降圧 DCDC コンバータ動作(降圧モード)

入力電源判別が完了し入力カレントリミット値が決定すると、降圧DCDCコンバータが起動してシステムへ電力を供給します。充電条件が成立している場合、同時に充電動作も行います。

SYS電圧立ち上がりのソフトスタートを行う為、SYS電圧<2.2V時は入力電流をシステム起動時入力カレントリミット(=I_{IN_START})に抑えます。また、軽負荷時の効率を改善する為、「BATT電圧が最小システム動作電圧(=V_{SYS_MIN})以下」、かつ「IINDPM設定が500mA以上」の時に軽負荷を検出するとPFM制御へ自動遷移します。MM3659のPFM制御はパルススキップ型で行われ、スイッチングデューティ比はVIN電圧とSYS電圧の比で決定されます。

システム過電圧保護 (SYSOVP)

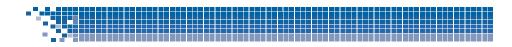
降圧DCDCコンバータが動作している時、MM3659はSYS電圧を監視しており、SYS過電圧を上回るとスイッチング動作を停止させます。 同時にMM3659内部にも電流30mAを引き込み、SYS端子に接続されている後段デバイスの過電圧破壊を防止します。

8-3-4. 昇圧 DCDC コンパータ動作(昇圧モード)

MM3659には、電池を電源とした昇圧DCDCコンバータモード(USB On-The-Go)があります。昇圧モードになる為の条件は下記の通りです。

- 電池のみで起動している
- ・BATT電圧が昇圧時電池低電圧検出電圧を上回っている (BATT>VOTGBTLV)
- ・CHG_CONFIG(REG01[5:4])が"10"か"11"になっている
- OTG端子がHighになっている

昇圧モードでは、VIN端子にOTG出力電圧(=V_{BOOST_REG})を出力します。VIN_STAT(REG08[7:6])は"11"になります。また、軽負荷時の効率を改善する為、軽負荷を検出するとPFM制御へ自動遷移します。


昇圧モード時出力過電圧保護 (OTGOV)

昇圧モード時、MM3659はVIN電圧を監視し、その電圧がOTG出力過電圧(=V_{BOOST_OVP})を上回ると、昇圧DCDCコンバータを停止させ、 昇圧モードから抜けます。また、INT#割り込み信号を出力し、BOOST_FAULT(REG09[6])を"1"にします。

昇圧モード時出力過電流保護 (RBFETOCP)

昇圧モード時、VIN端子から出力する電流がRBFET過電流(= I_{RBFET_OCP})を上回ると、過電流判定になります。過電流判定が20msec継続するとスイッチング動作を停止、INT#割り込み信号を出力し、BOOST_FAULT(REG09[6])が"1"になります。30msec停止後、スイッチング動作を再開します。VIN端子が地絡している時など、過電流が継続するような場合では、スイッチング動作停止と再開を繰り返すことになります。RBFET過電流(= I_{RBFET_OCP})は、BOOST_LIM (REG01[0])で変更することが可能です。

8-4. システム電力管理

MM3659は、入力電源と電池のいずれか、または両方から、システムへ電力を供給します。

8-4-1. Narrow VDC アーキテクチャ

MM3659は、システムと電池がBATTFETで区切られたNarrow VDCアーキテクチャに対応しており、システムへ供給する電圧はBATT+100mVに制御されています。ただし、同時にSYS_MIN(REG01[3:1])で設定した最小システム動作電圧($=V_{SYS_MIN}$)を下回らないように制御している為、電池電圧が低い場合はシステムへ供給する電圧が一定に保たれます。

充電動作を行っていない時

- ・BATT<V_{SYS MIN}の場合、SYS電圧はV_{SYS MIN}+100mVに制御されます。(In VSYSMIN Regulation)
- ・BATT>V_{SYS MIN}の場合、SYS電圧はBATT+100mVに制御されます。(Not In VSYSMIN Regulation)

充電動作を行っている時

- ・BATT < V_{SYS_MIN}の場合、SYS電圧はV_{SYS_MIN}+100mVに制御されたままBATTFETがリニア制御される、リニア充電動作を行います。
- ・BATT>V_{SYS_MIN}の場合、BATTFETがフルONして、降圧DCDCコンバータによるスイッチング充電動作を行います。SYS電圧はBATTFET オン抵抗(=R_{ON_BATTFET})と充電電流で発生する電圧をBATT電圧に加えた電圧になります。

また、VSYS_STAT(REG08[0])を読み取ることで、SYSのRegulation状態が分かります。

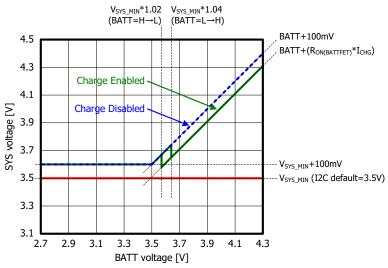
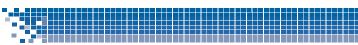



Figure 16. SYS Voltage Chart

8-4-2. ダイナミックパワー管理(DPM)機能

USB規格のカレントリミット適合やアダプタ過電流防止の為、MM3659はVIN端子の電圧と電流を監視しており、下記の制御を行っています。

- ・VINDPM(REG00[6:3])で設定される電圧よりVIN電圧が低下しないように、充電電流を減少させる。
- ・IINDPM(REG00[2:0])で設定される電流よりVIN電流が増加しないように、充電電流を減少させる。

IINDPMには、ILIM端子で設定するクランプ値も影響しますので、ご注意ください。

DPM機能が動作していると、DPM_STAT(REG08[3])が"1"になります。また、充電タイマーのカウント速度が半分になり、満充電判定も行われなくなります。

充電電流がゼロになってもDPM機能が動作している場合、SYS電圧が低下します。

8-4-3. バッテリーサポート

SYS電圧がBATT電圧よりSYS/BATT電位関係検出電圧を下回る(SYS<BATT- V_{SYS_BATT})と、バッテリーサポートモードに入ります。バッテリーサポート中は、BATTFETをONして入力電源と電池の両方から電力を供給し、SYS電圧の低下を防ぎます。ただし、BATT電圧が電池 過放電検出電圧(= V_{BATT_DPL})を下回っている場合は、バッテリーサポートモードになりません。

バッテリーサポートモード中は、SYS電圧がBATT電圧よりバッテリーサポート電圧(= V_{FWD})だけ低い電圧(SYS=BATT- V_{FWD})になるようにBATTFETでリニア制御されています。

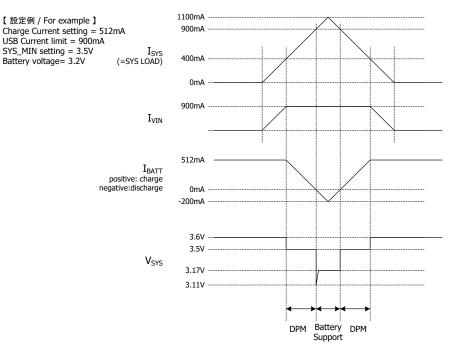
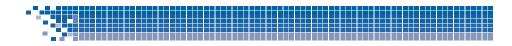



Figure 17. DPM and Battery Support

8-5. 充電制御

8-5-1. 充電制御サイクル

降圧DCDCコンバータが動作している時に、下記条件が成立することで充電動作を行います。

- ・電池温度異常が発生していない
- •CHG_CONFIG(REG01[5:4])が"01"になっている
- ・EN#がLowになっている
- BATTFET強制OFFにしていない

MM3659の充電制御は、一般的なCCCV制御です。充電制御に関するパラメータの多くは、I2Cで変更することが可能で、さまざまなアプリケーションに対応します。また、充電状態をCHG_STAT(REG08[5:4])で表示します。充電状態はSTAT#にも出力されており、充電中は"L"、充電していない時や満充電の時は"H"、充電エラーの時は点滅します。充電タイミングチャートをFigure 18に、充電制御パラメータの一覧をTable 2に示します。

なおDPM機能もしくはサーマルレギュレーションが動作していると、充電タイマーのカウント速度が半分になり、満充電判定も行われなくなります。

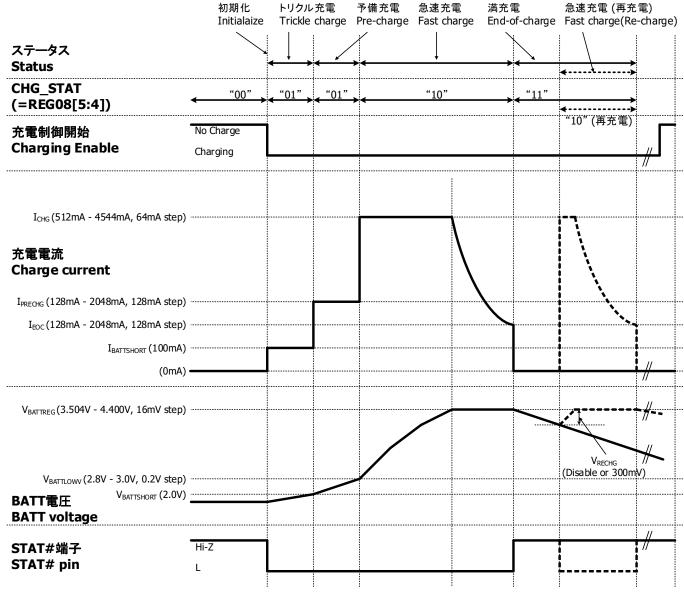


Figure 18. Charge Timing Chart

Table 2. Charging Parameter

Parameter	Symbol	I2C REG	I2C Default	I2C setting range
Trickle charge current	IBATTSHORT	-	85mA	1
Pre-charge current	I _{PRECHG}	REG03[7:4]	256mA	128~2048mA, 128mA step
Fast charge current	I_{CHG}	REG02[7:2]	832mA	512~4844mA, 64mA step
End-of-charge current	I_{EOC}	REG03[3:0]	256mA	128~2048mA, 128mA step
Battery short detection voltage	V _{BATTSHORT}	-	2.0V	-
Battery low-voltage detection voltage	V _{BATTLOWV}	REG04[1]	3.0V	2.8~3.0V, 0.2V step
Constant voltage control voltage	V _{BATTREG}	REG04[7:2]	4.304V	3.504~4.400V, 16mV step
Recharge detection voltage	V_{RECHG}	REG04[0]	Disable	Disable or 300mV

電池過電圧保護 (BATTOVP)

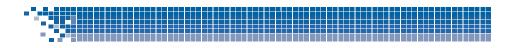
降圧DCDCコンバータが動作している時、MM3659はBATT電圧を監視しており、電池過電圧検出電圧(=V_{BATTOVP})を上回るとスイッチング動作を停止させ、優先的に電池からの放電を行います。同時にMM3659内部にも電流30mAを引き込み、電池の過電圧状態から回復を促します。

降圧DCDCコンバータが動作中に後からBATT端子に電池を挿入すると、BATT端子に発生するリンギングを電池過電圧保護機能が検出する事を起因として、SYS端子への電力供給が約1ms停止する可能性がありますので、ご注意ください。

8-5-2. 充電電流削減オプション

50PCT(REG02[0])を"1"にすることで、充電電流を元の設定値の50%へ減少させることが出来ます。

この機能によって充電電流が減少した場合においても満充電検出は行われる為、満充電判定で充電動作が停止する可能性があります。 満充電判定を行いたくない場合は、EN_TERM(REG05[7])を"0"に設定してください。


8-5-3. 充電経路抵抗補正

実際のアプリケーションの充電電流が流れる経路には、コネクタの接触抵抗、電池パック内のセンス抵抗、保護FETのON抵抗などの抵抗成分が存在します。この抵抗成分は、CC制御の期間を短くしCV制御の期間を長くする為、充電時間が長くなることになります。

MM3659ではこの抵抗成分をパラメータとしてBATT_RES(REG06[7:5])に設定することで、充電電流と抵抗成分で発生する電圧降下を加味してCV制御電圧を持ち上げ、CC制御の期間を長くすることで充電時間の短縮を行うことが可能です。また、持ち上げる電圧には、BATT_VCLAMP(REG06[4:2])でクランプを掛けることが可能です。実際のCV制御電圧は、下記式で求められます。

 $V_{BATTREG_ACTUAL} = V_{BATTREG_I2C} + min((I_{CHG_ACTUAL} \times BATT_RES), BATT_VCLAMP)$

8-5-4. 電池温度検出

MM3659にはサーミスタ接続端子としてTS1とTS2の二つが用意されています。TS1とTS2をショートして使用することで、JEITA推奨の電池温度プロファイルに準拠した充電動作を行います。また、TS2でサーミスタを使用しない構成にすることで、高温/低温検出のみの電池温度プロファイルで充電動作させることも可能です。

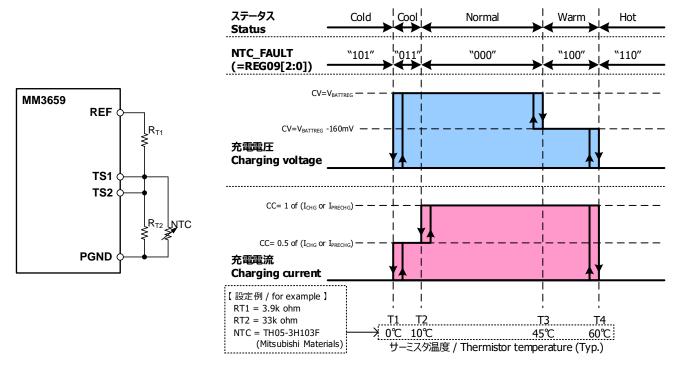


Figure 19. Circuit around TS1/TS2 with JEITA Battery Temperature Profile

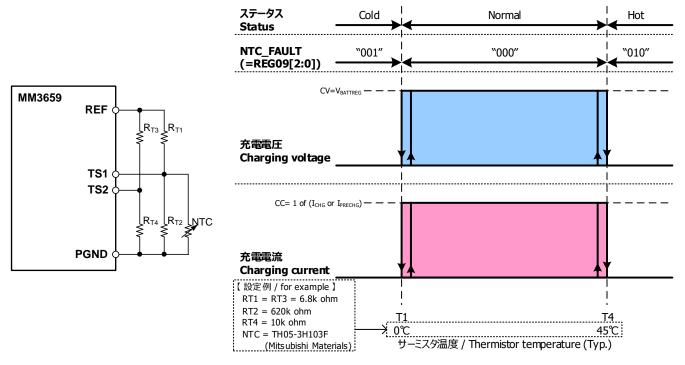
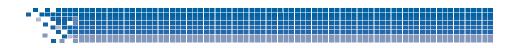



Figure 20. Circuit around TS1/TS2 with Hot/Cold Battery Temperature Profile

8-5-5. 満充電検出動作

電池電圧が再充電検出電圧を上回っている状態で、充電電流が満充電検出電流を下回ると、満充電になります。満充電判定は、EN_TERM(REG05[7])で有効・無効が切り替えられ、"1"の時に満充電判定有効、"0"の時に満充電判定無効になります。満充電判定無効の場合、充電タイマーがタイムアップするまでフローティング充電の状態になります。

8-5-6. 満充電インジケータ閾値

TERM_STAT(REG05[6])を"1"に設定すると、充電電流が800mA充電電流検出(=I_{TERM_800MA})以下になった時にSTAT#を"H"にします。 充電動作は、満充電になるまで継続します。この時に満充電判定を無効化していると、STAT#が"H"になったまま、充電タイマーがタイム アップするまでフローティング充電の状態になります。

8-5-7. 充電安全タイマー

MM3659には、予備充電タイマーと急速充電タイマーの2種類あります。予備充電タイマーは、トリクル充電時もカウントアップします。ホストモード時の急速充電タイマーは、I2Cで変更が可能です。

充電タイマーがタイムアップすると充電動作が停止し、CHG_FAULT(REG09[5:4])が"11"になります。デフォルトモード時の充電タイマータイムアップ、またはデフォルトモードかつVIN電源がUSB100mA判定時の予備充電タイマータイムアップは、充電動作を停止すると同時にHiZステートになります。

DPM機能かサーマルレギュレーションが動作して充電電流が減少している時、充電タイマーのカウント速度が半分になります。ただし、デフォルトモードかつVIN電源がUSB100mA判定時は、カウント速度は元のままです。また、TMR2X_EN(REG07[6])を"0"にすると、いずれのモードでもカウント速度は元のままです。

各モード時の充電タイマー時間、タイムアップ時の動作、DPM機能/サーマルレギュレーション時のクロックは、Table 3の通りです。 充電タイマーはEN_TIMER(REG05[3])で有効・無効が切り替えられ、"1"の時にタイマー有効、"0"の時にタイマー無効になります。 充電タイマーがタイムアップした後、充電動作を再開させる為には、下記のいずれかで充電タイマーリセットを行ってください。

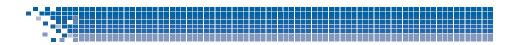

- ・新しい充電サイクルを開始する(VIN電源の抜き差し、HiZステートから復帰)
- •EN#をHighからLowに切り替える
- -CHG_CONFIG(REG01[5:4])を"00"から"01"に書き換える
- •EN_TIMER(REG05[3])に"0"を書き込む
- ・I2C Reset(REG01[7])に"1"を書き込む

Table 3. Charging Safety Timer

Parameter Default mode (USB100mA)		Default mode (not USB100mA)	Host mode
Pre-charge Timer	Total 4Emin (May)	1h	1h
Fast charge Timer	Total 45min (Max.)	5h	REG05[2:1] setting
Pre-charge Timer expiration	11:7 -4-4-	Charging stop	Chausing store
Fast charge Timer expiration	HiZ state	HiZ state	Charging stop
In DPM or Thermal regulation	Use original clock	Use half clock	Use half clock

Jun, 2022 Rev.0 21

8-6. ステータス出力機能

8-6-1. PG STAT

PG_STAT(REG08[2])は、VIN電源の接続状態を表示しており、下記条件を満たしている時に"1"になります。

- -VIN電圧がI2C通信動作範囲にある (VIN>V_{VIN_UVLOZ})
- ・VIN電圧がBATT電圧より高い (VIN>BATT+V_{INDET})
- ・VINが不良アダプタ検出電流(=IBADSRC)以上の電流能力がある
- ・VINがVIN過電圧検出電圧より低い (VIN<VACOV)

8-6-2. STAT#

STAT#端子は充電状態を表示し、充電中は"L"、充電していない時や満充電の時は"H"、充電エラーの時は点滅します。

Table 4. STAT# Pin State

CHARGING STATE	STAT#
Charging in progress (including recharge)	Low
Charge Disable Charging complete	High
Input over-voltage Safety timer expiration Battery over-voltage in Buck Converter mode NTC fault (TS1/TS2 Cold or Hot)	blinking at 1Hz

8-6-3. INT#

マイコンでMM3659の状態を常時モニタリングする必要性を無くす為、MM3659は下記イベント発生時に、INT#出力パルス幅(=t_{INT})のLowパルス信号をINT#端子から出力し、マイコンに通知します。一部の条件は、I2Cでマスクすることが可能です。

- POR occurs
- ② Logic of the OTG terminal changes
- 3 Input Source Qualification completes
- 4 Logic of PG_STAT (REG08[2]) changes
- (5) Charge completes
- 6 The battery voltage crosses VBATT_DPL (rising or falling)
- (7) WATCHDOG FAULT (REG09[7]), becoming Fault state
- 8 BOOST_FAULT (REG09[6]), becoming Fault state
- (II) BAT_FAULT (REG09[3]) becomes Fault state (with REG07[0] masking possibility)
- ① NTC_FAULT (REG09[2:0]) becomes Fault state (Cold or Hot)

⑦~⑪は、フォルトレジスタにFaultを表示する条件です。これらのFault要因によるINT#割り込みが発生した場合、フォルトレジスタにFault情報がラッチされていない状態になるまで、いずれのFault要因によるINT#割り込みも発生しなくなります。.

8-6-4. フォルトレジスタ (REG09h)

NTC_FAULT以外のFaultが発生すると、その情報はフォルトレジスタにラッチされ、フォルトレジスタをReadするまで更新されません。例えば、BATT電圧が高くなりBATTOVPが発生した後に、BATT電圧が低くなりBATTOVPから復帰したとします。1回目のフォルトレジスタのReadではFaultを表示し、2回目のフォルトレジスタのReadではNormalを表示します。このように、フォルトレジスタは過去の情報をラッチしていることがある為、現時点でのFault情報を確認したい場合は、フォルトレジスタを2回続けてReadする必要があります。NTC_FAULTについては、上記のラッチ動作はありません。常に、フォルトレジスタをReadした時の情報を表示します。

8-7. 保護機能

8-7-1. 入力カレントリミット値クランプ機能

入力カレントリミットは、ILIM~PGND端子間に接続する抵抗によってクランプを掛けることが可能です。ILIM端子によるクランプ値は下記計算式で求められます。実際の入力カレントリミット値は、IINDPM(REG00[2:0])とクランプ値(IILIM)の小さい方になります。

$$I_{ILIM} = \frac{1V}{R_{ILIM}} \times K_{ILIM}$$

なお、ILIM端子の電圧を確認することで、入力電流を簡易的に把握することが出来ます。ILIM端子電圧から入力電流を求める計算式は下記の通りです。ILIM端子電圧が1Vを上回っている時は、DPM機能が動作している状態になります。

$$I_{VIN} = \frac{V_{ILIM}}{1V} \times I_{ILIM}$$

8-7-2. サーマルレギュレーション

降圧DCDCコンバータが動作している時、MM3659はジャンクション温度を監視しており、TREG(REG06[1:0])で設定できる温度を超えないようにサーマルレギュレーション制御を行います。サーマルレギュレーション動作時は、THERM_STAT(REG08[1])が"1"になります。また、充電タイマーのカウント速度が半分になり、満充電判定も行われなくなります。

8-7-3. サーマルシャットダウン

MM3659を熱破壊から防ぐ為、サーマルシャットダウン回路を内蔵しており、ジャンクション温度が約160℃を超えるとサーマルシャットダウン状態になります。サーマルシャットダウン時は、DCDCコンバータを停止します。また、CHG_FAULT(REG09[5:4])が"10"になります。なお、サーマルシャットダウンは絶対最大定格を超えた状態での動作となります。その為、この機能を積極的に使用するアプリケーション設計は避けてください。

8-7-4. 入力電源過電圧保護 (VINOVP)

VIN電圧がVIN過電圧検出電圧(=V_{ACOV})を上回ると、スイッチング動作を停止させます。また、INT#割り込み信号を出力し、CHG_FAULT(REG09[5:4])が"01"になります。

8-7-5. システム過電圧保護 (SYSOVP)

降圧DCDCコンバータが動作している時、MM3659はSYS電圧を監視しており、SYS過電圧を上回るとスイッチング動作を停止させます。 同時にMM3659内部にも電流30mAを引き込み、SYS端子に接続されている後段デバイスの過電圧破壊を防止します。

8-7-6. 昇圧モード時出力過電圧保護 (OTGOV)

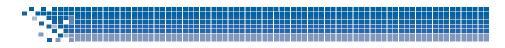
昇圧モード時、MM3659はVIN電圧を監視し、その電圧がOTG出力過電圧(=V_{BOOST_OVP})を上回ると、昇圧DCDCコンバータを停止させ、 昇圧モードから抜けます。また、INT#割り込み信号を出力し、BOOST_FAULT(REG09[6])を"1"にします。

8-7-7. 昇圧モード時出力過電流保護 (RBFETOCP)

昇圧モード時、VIN端子から出力する電流がRBFET過電流(= I_{RBFET_OCP})を上回ると、過電流判定になります。過電流判定が20msec継続するとスイッチング動作を停止、INT#割り込み信号を出力し、BOOST_FAULT(REG09[6])が"1"になります。ただし、30msec停止後、スイッチング動作を再開します。VIN端子が地絡している時など、過電流が継続するような場合では、スイッチング動作停止と再開を繰り返すことになります。RBFET過電流(= I_{RBFET_OCP})は、BOOST_LIM (REG01[0])で変更することが可能です。

8-7-8. 電池過電圧保護 (BATTOVP)

降圧DCDCコンバータが動作している時、MM3659はBATT電圧を監視しており、電池過電圧検出電圧(=V_{BATTOVP})を上回るとスイッチング動作を停止させ、優先的に電池からの放電を行います。同時にMM3659内部にも電流30mAを引き込み、電池の過電圧状態から回復を促します。


降圧DCDCコンバータが動作中に後からBATT端子に電池を挿入すると、BATT端子に発生するリンギングを電池過電圧保護機能が検出する事を起因として、SYS端子への電力供給が約1ms停止する可能性がありますので、ご注意ください。

8-7-9. 電池放電過電流保護 (BATTFETOCP)

SYS端子が地絡するなど、BATTFETに流れる放電電流がBATTFET過電流検出電流(=I_{BATTFET_OCP})を上回った時、BATTFETをラッチOFF させます。ラッチOFFを解除する為には、入力電源の抜き差しが必要です。

Jun, 2022 Rev.0 23

8-8. I2C 通信機能

8-8-1. I2C-bus について

I2C BusはSDA、SCLの2ラインでデータ転送を行う機器内バスシステムです。データ転送は1バイト単位で行われ、各バイトの終了後の確認応答(Acknowledge)が入ります。Start conditionからMSBファーストで送受信が行われます。

MM3659のReadとWriteのプロトコルは、下図の様に設定されています。

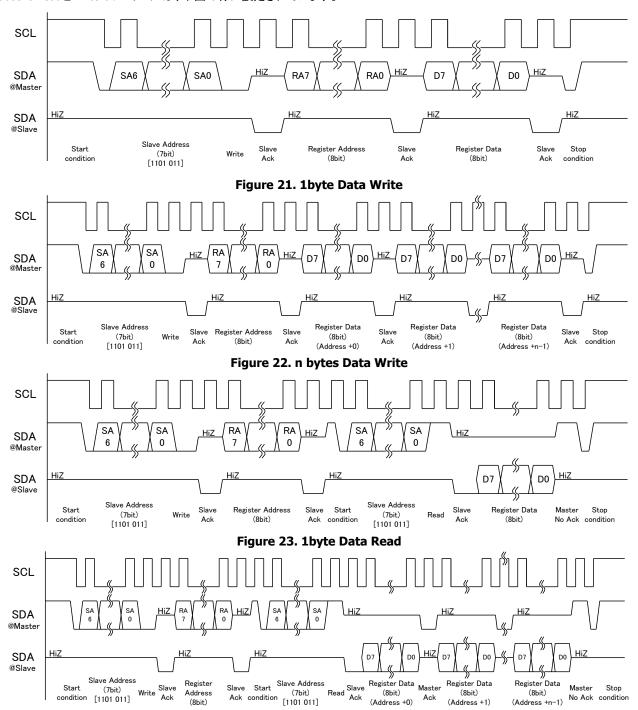
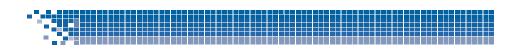



Figure 24. n bytes Data Read

		b07	b06	b05	b04	b03	b02	b01	b00
_	Slave Idress	1	1	0	1	0	1	1	R = 1 W = 0
	00h	EN_HIZ		VINDP	M[3:0]		IINDPM[2:0]		
	01h	I2C Reset	WDT Reset	CHG_CO	NFIG[1:0]		SYS_MIN[2:0] BC		
	02h			ICHG	[5:0]	50P			
	03h		IPRECH	IG[3:0]		ITERM[3:0]			
dress	04h			BATTRI	EG[5:0]			BATTLOWV	RECHG
Register Address	05h	EN_TERM	TERM_STAT	WATCHE	OOG[1:0]	EN_TIMER	CHG_TIN	MER[1:0]	
Regis	06h		BATT_RES[2:0]		В	ATT_VCLAMP[2:	0]	TREG[1:0]	
	07h	DPDM_EN	TMR2X_EN	BATTFET_ Disable				INT_MA	ASK[1:0]
	08h	VIN_ST	AT[1:0]	CHG_STAT[1:0]		DPM_STAT	PG_STAT	THERM_ STAT	VSYS_STAT
	09h	WD_FAULT	BOOST_ FAULT	CHG_FAULT[1:0]		BATT_FAULT	NTC_FAULT[2:0]]
	0Ah			PN[5:0]					

Register Address 00h~07h Register Address 08h~0Ah

: Readable and Writable : Read Only (Write data is ignored)

8-8-3. I²C レジスタ説明

Register Address 00h (REG00)

R/W	EN_HIZ			
00h	b07 Status			
default	0 Disable			
	1 Enable			

R/W		IINDPM[2:0]				
00h	b02	b01	b00	mA		
	0	0	0	100		
	0	0	1	150		
	0	1	0	500		
	0	1	1	900		
	1	0	0	1200		
	1	0	1	1500		
	1	1	0	2000		
	1	1	1	3000		

R/W	VINDPM[3:0]				
00h	b06	b05	b04	b03	V
default	0	0	0	0	3.88
	0	0	0	1	3.96
	0	0	1	0	4.04
	0	0	1	1	4.12
	0	1	0	0	4.20
	0	1	0	1	4.28
	0	1	1	0	4.36
	0	1	1	1	4.44
	1	0	0	0	4.52
	1	0	0	1	4.60
	1	0	1	0	4.68
	1	0	1	1	4.76
	1	1	0	0	4.84
	1	1	0	1	4.92
	1	1	1	0	5.00
	1	1	1	1	5.08

Register Address 01h (REG01)

R/W	I2C Reset			
01h	b07 Status			
default	0 Keep current			
	1 Reset to default			

R/W	WDT Reset			
01h	b06 Status			
default	0 Normal			
	1 Reset WDT			

R/W	CHG_CONFIG[1:0]			
01h	b05 b04 Status			
	0	0	Charge Disable	
default	0	1	Charge Battery	
	1	0	OTG	
	1	1	OTG	

R/W	BOOST_LIM			
01h	b00	mA		
	0	500		
default	1	1300		


R/W	SYS_MIN[2:0]				
01h	b03	b02	b01	٧	
	0	0	0	3.0	
	0	0	1	3.1	
	0	1	0	3.2	
	0	1	1	3.3	
	1	0	0	3.4	
default	1	0	1	3.5	
	1	1	0	3.6	
	1	1	1	3.7	

Register Address 02h (REG02)

R/W		ICHG[5:0]					
02h	b07	b06	b05	b04	b03	b02	mA
	0	0	0	0	0	0	E12 4E44 ··· A
			,	512 ~ 4544 mA (64mA step)			
	1	1	1	1	1	1	(04IIIA Step)
default	0	0	0	1	0	1	832 mA

R/W	50PCT			
02h	b00 Status			
default	0 ICHG			
	1 50% of ICHG			

Register Address 03h (REG03)

R/W	IPRECHG[3:0]				
03h	b07	b06	b05	b04	mA
	0	0	0	0	128
default	0	0	0	1	256
	0	0	1	0	384
	0	0	1	1	512
	0	1	0	0	640
	0	1	0	1	768
	0	1	1	0	896
	0	1	1	1	1024
	1	0	0	0	1152
	1	0	0	1	1280
	1	0	1	0	1408
	1	0	1	1	1536
	1	1	0	0	1664
	1	1	0	1	1792
	1	1	1	0	1920
	1	1	1	1	20 4 8

R/W	ITERM[3:0]				
03h	b03	b02	b01	b00	mA
	0	0	0	0	128
default	0	0	0	1	256
	0	0	1	0	384
	0	0	1	1	512
	0	1	0	0	640
	0	1	0	1	768
	0	1	1	0	896
	0	1	1	1	1024
	1	0	0	0	1152
	1	0	0	1	1280
	1	0	1	0	1408
	1	0	1	1	1536
	1	1	0	0	1664
	1	1	0	1	1792
	1	1	1	0	1920
	1	1	1	1	2048

Register Address 04h (REG04)

R/W	BATTREG[5:0]						
04h	b07	b06	b05	b04	b03	b02	V
	0	0	0	0	0	0	2.504 4.400.1/
			^	v			3.504 ~ 4.400 V
	1	1	1	0	0	0	(16mV step)
	1	1	1	0	0	1	Ignored
	1	1	1	0	1	0	Ignored
	1	1	1	0	1	1	Ignored
	1	1	1	1	0	0	Ignored
	1	1	1	1	0	1	Ignored
	1	1	1	1	1	0	Ignored
	1	1	1	1	1	1	Ignored
default	1	1	0	0	1	0	4.304 V

R/W	BATTLOWV			
04h	b01 V			
	0	2.8		
default	1	3.0		

R/W	RECHG			
04h	b00 mV			
default	0	Disable		
	1	300		

Register Address 05h (REG05)

R/W	EN_TERM			
05h	b07 Status			
	0	Disable		
default	1	Enable		

R/W	WATCHDOG[1:0]			
05h	b05 b04 sec			
	0 0 Disable			
default	0	1	40	
	1	0	80	
	1	1	160	

R/W	TERM_STAT			
05h	b06	Status		
default	0	Match ITERM		
	1	Below 800mA		

R/W	EN_TIMER			
05h	b03 Status			
	0	Disable		
default	1	Enable		

R/W	CHG_TIMER[1:0]				
05h	b02 b01 hours				
	0	0	5		
default	0	1	8		
	1	0	12		
	1	1	20		

Register Address 06h (REG06)

R/W	BATT_RES[2:0]					
06h	b07	b06	b05	mohm		
default	0	0	0	0		
	0	0	1	10		
	0	1	0	20		
	0	1	1	30		
	1	0	0	40		
	1	0	1	50		
	1	1	0	60		
	1	1	1	70		

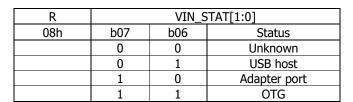
R/W		TREG[1:0]			
06h	b01 b00 °C				
	0	0	60		
	0	1	80		
	1	0	100		
default	1	1	120		

R/W	BATT_VCLAMP[2:0]			
06h	b04	b03	b02	mV
default	0	0	0	0
	0	0	1	16
	0	1	0	32
	0	1	1	48
	1	0	0	64
	1	0	1	80
	1	1	0	96
	1	1	1	112

Register Address 07h (REG07)

R/W	DPDM_EN	
07h	b07	Status
default	0	Not in detection
	1	Force detection

R/W	BATTFET_Disable	
07h	b05 Status	
default	0	Allow BATTFET turn on
	1	Turn off BATTFET


R/W	TMR2X_EN	
07h	b06 Status	
	0	Disable
default	1	Enable

R/W	INT_MASK[1]	
07h	b01 Status	
	0	No INT during CHG_FAULT
default	1	INT on CHG_FAULT

R/W	INT_MASK[0]	
07h	b00	Status
	0	No INT during BATT_FAULT
default	1	INT on BATT_FAULT

R	CHG_STAT[1:0]		
08h	b05	b04	Status
	0	0	Not Charging
	0	1	Pre-charge
	1	0	Fast Charging
	1	1	Charge Done

R	DPM_STAT	
08h	b03	Status
	0	Not in DPM
	1	In VINDPM or IINDPM

R	PG_STAT	
08h	b02 Status	
	0	Not Power Good
	1	Power Good

R	THERM_STAT	
08h	b01	Status
	0	Normal
	1	In Thermal regulation

R	VSYS_STAT	
08h	b00 Status	
	0	Not in VSYSMIN regulation
	1	In VSYSMIN regulation

Register Address 09h (REG09)

R	WD_FAULT	
09h	b07 Status	
	0	Normal
	1	Watchdog timer expiration

R	BOOST_FAULT			
09h	b06 Status			
	0	Normal		
	1	VIN OCP or OVP		

R	CHG_FAULT[1:0]			
09h	b05 b04 Status			
	0	0	Normal	
	0	1	Input fault	
	1	0	Thermal shutdown	
	1	1	Safety timer expiration	

R	BATT_FAULT			
09h	b03 Status			
	0	Normal		
	1	BATTOVP		

R	NTC_FAULT[2:0]				
09h	b02	b01 b00		JEITA	Cold/Hot
	0	0	0	Normal	Normal
	0	0	1	N/A	Cold
	0	1	0	N/A	Hot
	0	1	1	Cool	N/A
	1	0	0	Warm	N/A
	1	0	1	Cold	N/A
	1	1	0	Hot	N/A
	1	1	1	N/A	N/A

Register Address OAh (REGOA)

R/W	PN[5:0]						
0Ah	b05	b04	b03	b02	b01	b00	-
	0	1	1	0	0	1	MM3659C

9. 応用回路例

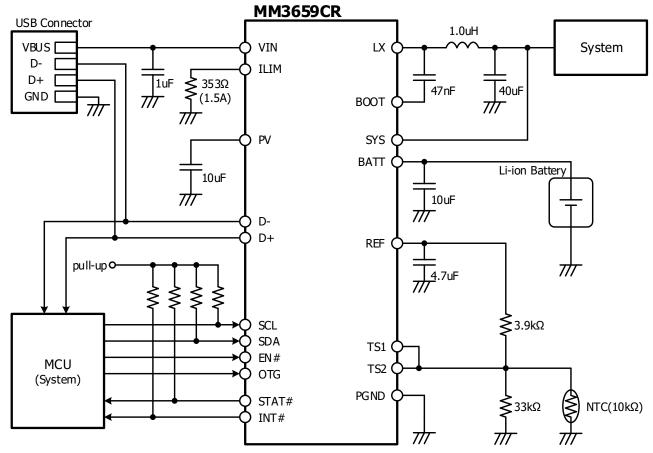


Figure 25. Typical application circuit

これらの回路は参考例として代表的な応用例を示したもので、実際にご使用する場合は、十分ご検討して使用して頂くようお願いします。 これらの回路を使用した事に起因する事故或いは損害等につきましては、当社はその責を負いかねますのでご了承下さい。これらの回路を使用した事により、弊社または第三者の産業財産権に対する侵害が発生した場合、弊社はその責を負いかねますのでご了承願います。