システムリセット用IC

Monolithic IC PST93XX Series

'00.8.3

概要

本ICはさまざまなCPUシステムやその他のロジックシステムにおいて、電源投入時や電源瞬断時に電源電圧 を検出し、確実にシステムにリセットをかけるローリセットタイプのICです。

また、超低消費電流、及び高精度の電圧検出機能を有するため、バッテリー使用製品の電圧チェック回路に も最適です。

特長

(1) 高精度の電圧検出

 $V_S \pm 2\%$ max.

(2) 超低消費電流である

Icch = $2.0 \mu A$ typ. Iccl = $2.0 \mu A$ typ.

(3) 動作限界電圧が低い

0.65V typ.

(4) 検出電圧にはヒステリシス電圧を設けてる 50mV typ.

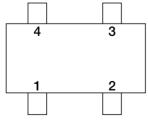
(5) ON時出力電流が大きい

5mA min.

(6) 検出電圧は、0.1Vステップで1.9~4.6Vの範囲で下記指定方法により任意に選択が可能

└┴──検出電圧値

(例)4.2Vの場合……PST9342

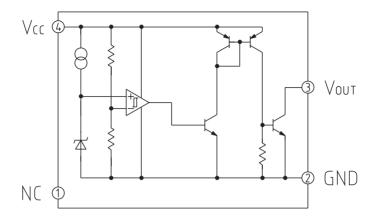

パッケージ

 $SC-82ABA (PST93 \times \times U)$

用途

- (1) マイコン・CPU・MPUのリセット回路
- (2) ロジック回路のリセット回路
- (3) バッテリー電圧チェック回路
- (4) バックアップ電源の切り替え回路
- (5) レベル検出回路

端子接続図



(TOP VIEW)

	2	
SC-82ABA	1	

1	NC
2	GND
3	Vout
4	Vcc

ブロック図

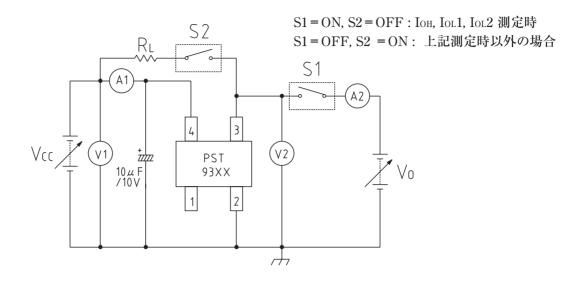
端子説明

ピンNo.	端子名	機能
1	NC	
2	GND	GND端子
3	Vout	リセット信号出力端子
4	Vcc	電源端子/電圧検出端子

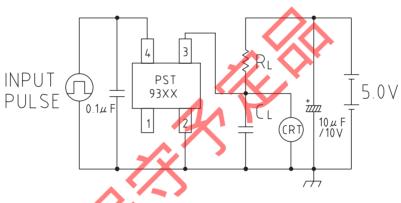
最大定格 (Ta=25℃)

項目	記号	定格	単 位	
保存温度	Tstg	-40∼+125	${\mathbb C}$	
動作温度	Topr	-20∼+75	$^{\circ}$	
電源電圧	Vcc max.	-0.3∼+10	V	
許容損失	Pd	150	mW	

推奨動作条件

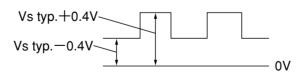

項目	記 号	定 格	単 位
動 作 温 度	Topr	-20∼+75	${\mathbb C}$
電源電圧	Vcc	+0.85~+10	V

電気的特性 (Ta=25℃)

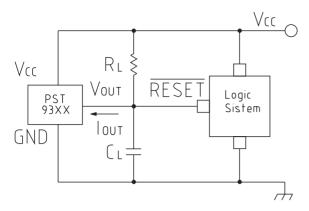

項目	記号	測定回路	測定条件	最小	標準	最大	単位
			PST9346	4.508		4.692	
			PST9345	4.410	4.500	4.590	
			PST9344	4.312	4.400	4.488	
			PST9343	4.214	4.300	4.386	
			PST9342	4.116	4.200	4.284	
			PST9341	4.018	4.100	4.182	
			PST9340	3.920	4.000	4.080	
			PST9339	3.822		3.978	
			PST9338	3.724		3.876	
			PST9337	3.626	3.700	3.774	
			PST9336	3.528	3.600	3.672	
			PST9335	3.430	3.500	3.570	
			Vcc=H→L PST9334	3.332	3.400	3.468	
検出電圧	V_{S}	1	$R_L = 4.7k$ PST9333	3.234	3.300	3.366	V
			Vol≤0.4V PST9332	3.136	3.200	3.264	
			PST9331	3.038	3.100	3.162	
			PST9330	2.940	3.000	3.060	
			PST9329	2.842		2.958	
			PST9328	2.744		2.856	
			PST9327	2.646		2.754	
			PST9326	2.548		2.652	
			PST9325	2.450	2.500	2.550	
			PST9324	2.352	2.400	2.448	
			PST9323	2.254		2.346	
			PST9322	2.156	2.200	2.244	
			PST9321		2.100	2.142	
			PST9320	1.960	2.000	2.040	
			PST9319	1.862	1.900	1.938	
ヒステリシス電圧	⊿Vs	1	$V_{CC} = L \rightarrow H \rightarrow L, R_L = 4.7k$	30	50	100	mV
検出電圧温度係数	Vs/⊿T	1	$RL = 4.7 \text{k}, \text{ Ta} = -20 \sim +75 ^{\circ}\text{C}$		± 0.01		%/°C
Lowレベル出力電圧	Vol		$V_{CC} = V_{S} \text{ min.} - 0.05 \text{V}, R_{L} = 4.7 \text{k}$		0.1	0.4	V
出カリーク電流	Іон	1	$V_{CC} = V_O = 10V$			± 0.1	μA
ON時回路電流	Icel	1	$V_{CC} = V_S \text{ min.} - 0.05 \text{V}, R_L = \infty$		2.0	4.0	μA
OFF時回路電流	Іссн	1	$V_{CC} = V_S \text{ typ.}/0.85, R_L = \infty$		2.0	4.0	μA
"H"伝達遅延時間	Трін	2	$R_L = 4.7k, C_L = 100pF $		20	60	μs
"L"伝達遅延時間	Трнг	2	$R_L = 4.7k, C_L = 100pF \%2$		20	60	μs
動作限界電圧	VOPL	1	$R_L = 4.7k$, $Vol \leq 0.4V$		0.65	0.85	V
ON時出力電流 1	Iol1	1	$V_{CC} = V_S \text{ min.} - 0.05V, V_0 = 0.4V$	5			mA
ON時出力電流 2	Iol2	1	$V_0 = 0.4V \text{ Vcc} = V_S \text{ min.} - 0.05V,$	3			mA
0.1. 3 F120.0000 =	1022	_	$Ta = -20 \sim +75^{\circ}C$	Ŭ			

測定回路図

(1)



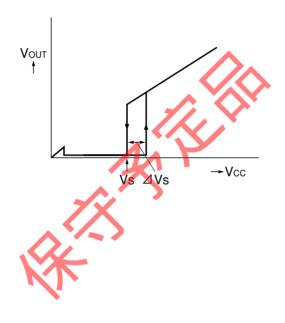
(2)



A:直流電流計 V:直流電圧計 CRT:オシロスコープ

INPUT PULSE

応用回路図



【CL設定】

上記応用回路例において、RL ≒ 500k Ω以上**に設定すると、Vccが動作限界(約0.7V)~1.0V付近において、Voutに数十mV程度の発振が現れる場合があります。使用上問題となる場合は、CL値を高め(推奨1000pF以上)に設定して下さい。

注:※Vsランクによって若干異なります。

特性図

