レギュレータ十リセット用IC

Monolithic IC MM1687 Series

概要

本ICは、DVD-ROMドライブ等光ディスクドライブ用に開発されたレギュレータ+リセットICです。レギュレータ出力電圧、リセット検出電圧は固定で、レギュレータ出力電圧は1.5~5.0V、リセット検出電圧は2.7~5.0Vまでご要望に合わせた設定ができます。

特長

(1) 出力電圧精度 ±2%

(2) 入出力電圧差 0.12V typ.(Io=150mA)

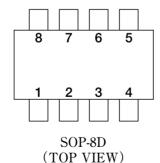
(3) 出力電流が大きい300mA max.(4) リップル除去率が高い80dB typ.

(5) サーマルシャットダウン回路内蔵

(6) カレントリミット回路内蔵

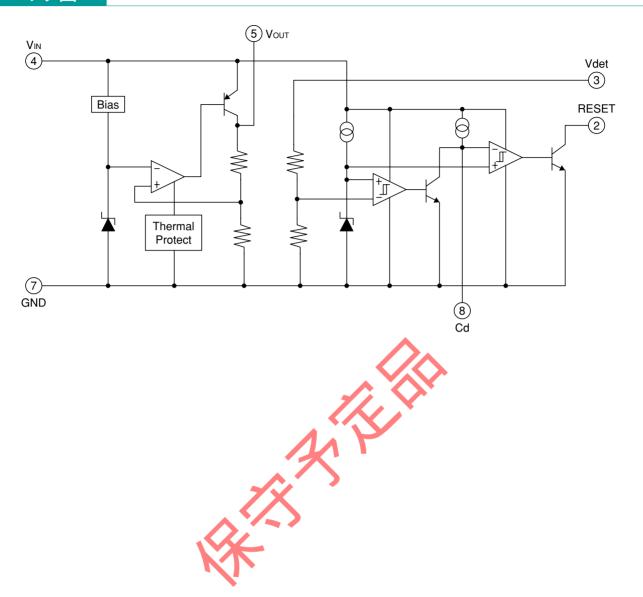
(7) リセット検出電圧 3.0~5.0V

(8) 電圧検出からリセット解除までの遅延時間を容易に設定可能


パッケージ

SOP-8D

用途


- (1) CD-ROMドライブ
- (2) 光ディスクドライブ

端子接続図

1	NC
2	Reset
3	Vdet
4	$ m V_{IN}$
5	Vout
6	NC
7	GND
8	Cd

ブロック図

端子説明

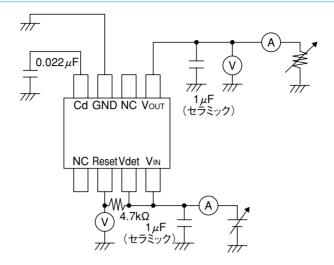
ピンNo.	端子名	機能	等価回路図
1,6	NC		
2	Reset	入力電圧検出出力 入力電圧検出出力端子 Reset端子論理 Reset Vdet <vs l="" vdet="">Vs H</vs>	Reset
3	Vdet	入力電圧検出端子	
5	V _{IN}	電源入力端子 電源入力端子には、1µF以 上のコンデンサを接続して 下さい。 出力端子	Input circuit 7/// Vout
7	GND	グランド	# * * * * * * * * * * * * * * * * * * *
8	Cd	遅延時間設定端子	— VIN
		Cd端子に接続する容量値によりReset端子出力の遅延時間設定が可能です。 tplh=450000·C tplh:伝達遅延時間(s) C:容量値(F)	Cd

最大定格 (Ta=25℃)

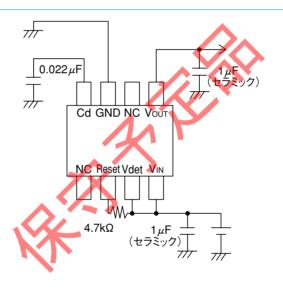
項目	記 号	定 格	単 位
保 存 温 度	Tstg	-55∼+150	${\mathbb C}$
電源電圧	$ m V_{IN}$	-0.3~+10	V
出力電流	Iout	500	mA
許 容 損 失	Pd	950(%1)	mW

注1:※1 両面ガラスエポキシ基板実装時(192×142×1.2mm)

推奨動作条件 (Ta=25℃)


項目	記 号	定 格	単 位
動 作 温 度	Тор	-40∼+85	$^{\circ}$
出力電流	Iout	0~400	mA
動作電圧	Vop	0~+10	V

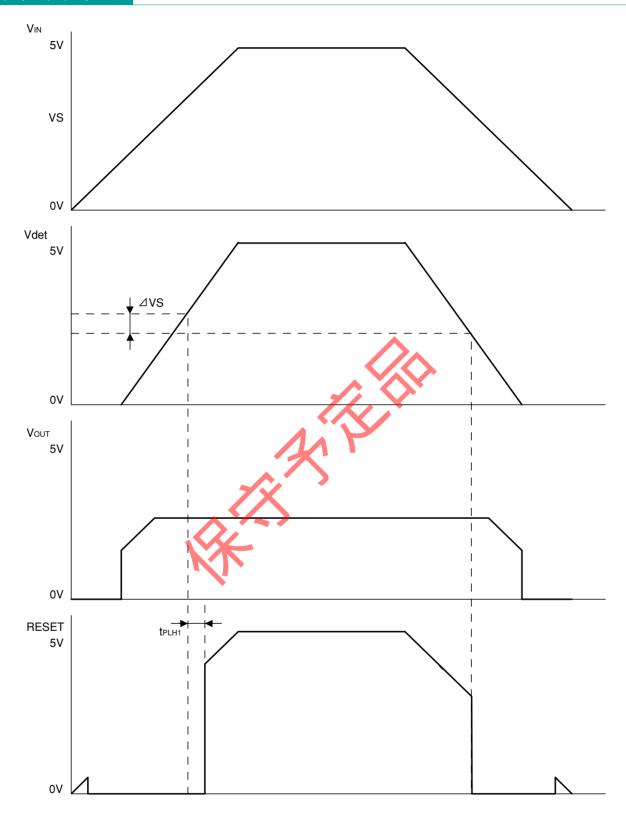
電気的特性 (特記なき場合Ta=25℃、Vcont=1.6V)


項目	記号	測定条件	最小	標準	最大	単位
無負荷時消費電流1	Iccq1	$V_{IN} = 5V$ $I_{OUT} = 0 \text{mA}$		0.6	1.2	mA
Vdet端子消費電流	Iccq3	Vdet=5V		20	40	μA
レギュレータ部						
出力電圧	Vout	$V_{\rm IN}$ = 5V $I_{\rm OUT}$ = 30mA	3.234	3.30	3.366	V
入出力電圧差	Vio	$V_{\rm IN} = 3.1 V$ $I_{\rm OUT} = 300 \rm mA$		0.25	0.50	V
入力変動率	⊿V1	$V_{\rm IN} = 4.5 \text{V} \sim 5.5 \text{V}$ $I_{\rm OUT} = 30 \text{mA}$		10	20	mV
負荷変動率	⊿V2	$V_{\rm IN} = 5V$ $I_{\rm OUT} = 0$ mA ~ 300 mA		20	120	mV
出力電圧温度係数 ※1	$\frac{\triangle V_{OUT}}{\triangle T}$	$T_{i} = -40 \sim +85^{\circ}C$ $V_{iN} = 5V \text{Tout} = 30\text{mA}$		100		ppm/°C
リップル除去率 ※1	RR	$V_{IN} = 5V$ $f = 1kHz$ $V_{RIPPLE} = 1V$ $I_{OUT} = 30mA$	50	80		dB
出力雑音電圧 ※1	Vn	$V_{IN} = 5V$ $f = 20 \sim 80 \text{kHz}$ $I_{OUT} = 30 \text{mA}$		40	120	μVrms
リセット部						
検出電圧	VS	$V_{IN} = H \rightarrow L$	3.626	3.70	3.774	V
検出電圧温度係数 ※1	∠VS/∠T	Tj = −40~+85°C		100		ppm/°C
ヒステリシス電圧	⊿VS	$V_{IN} = H \rightarrow L \rightarrow H$	100		200	mV
Lowレベル出力電圧	Vol	$V_{IN} = V det = 3.4V$ $RL = 4.7k \Omega$		100	200	mV
出力リーク電流	Іон	$V_{IN} = V det = 5V$			± 0.1	μΑ
ON時出力電流1	Ioli	$V_{\rm IN}$ = 3.6V	5			mA
ON時出力電流2 ※1	Iol2	$V_{IN} = 3.6V$ $Ta = -20 \sim +80^{\circ}C$	4			mA
H伝達遅延時間	tрын	Cd = OPEN		30	90	μs
Reset遅延時間 ※1	t _{PLH1}	$Vdet = 3.2 \rightarrow 4.2V, V_{IN} = 5V$ Cd = 0.022μF	5	10	20	ms
L伝達遅延時間 ※1	t _{PHL}			30	90	μs
動作限界電圧	Vopl	$V_{OL} = 0.4V$		0.65	0.85	V

注1:※1 設計保証値です。

測定回路図

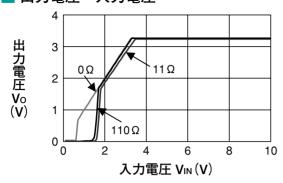
応用回路図

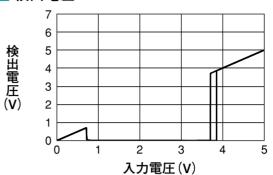


※温度特性:B特性

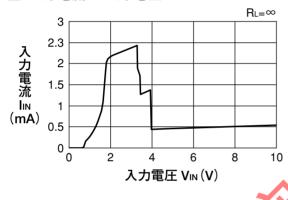
注意事項

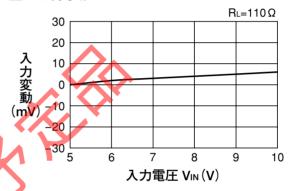
- 1. 出力コンデンサは、レギュレータの位相補償を行うために必ず必要です。
- 2. 出力コンデンサは、ESR安定領域の安定領域にあるコンデンサを使用して下さい。 また、ESR抵抗無しでセラミックコンデンサを使用できます。 セラミックコンデンサは、1μF以上のB特性のコンデンサを使用して下さい。
- 3. Vcc及びGND配線はインピーダンスが高い場合、ノイズや動作不安定の原因になるため 十分強化するようにして下さい。
- 4. 入力コンデンサは、入力端子より1cm以内に接続して下さい。
- 5. 入出力の電位が反転する場合、IC内部の寄生により大電流が流れる場合があります。 このようなアプリケーションでは、入出力間にバイパスダイオードを接続して下さい。

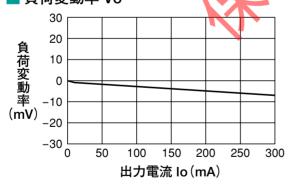

タイミングチャート

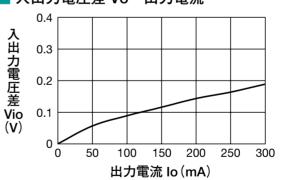

特性図

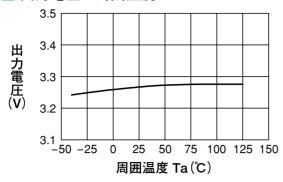
(特記なき場合Ta=25℃、VIN=5V、CIN=1µF、Co=1µF、Cd=0.022µF)

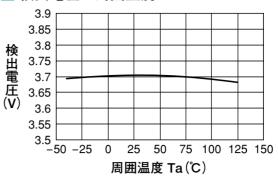

■ 出力電圧一入力電圧

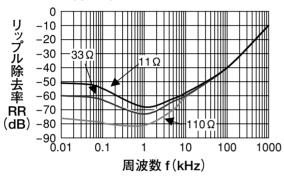

■ 検出電圧

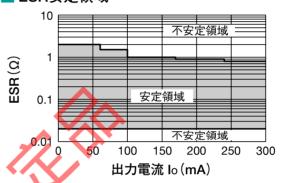

■ 入力電流一入力電圧

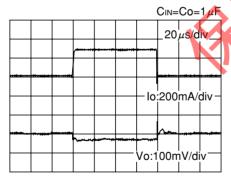

■ 入力変動 Vo


■ 負荷変動率 Vo


■ 入出力電圧差 Vo一出力電流


■ 出力電圧-周囲温度


■ 検出電圧一周囲温度


■リップル除去率

■ ESR安定領域

■ 負荷過渡応答(Io=0→300mA)

