DVDプレーヤ用映像信号ドライバIC

Monolithic IC MM1568

'02.7.10

概要

本ICは、DVDプレーヤ用に開発した6chプログレッシブ対応映像信号ドライバICです。DA変換時のノイズ成分を減衰するローパスフィルタと6dBアンプ・75Ω×3系統ドライバ(コンポーネント回路部は2系統)を内蔵しています。

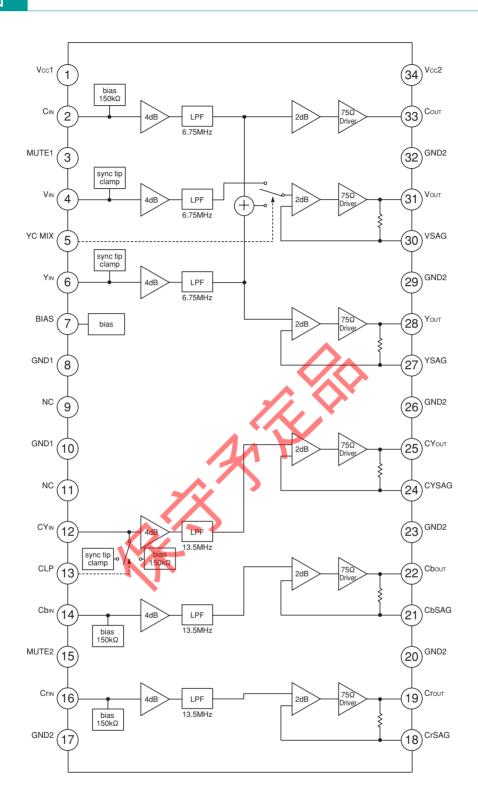
また、出力カップリングコンデンサ容量低減のためのSAG補正端子や出力端子部のESD保護素子の強化により外付けESD保護ダイオードの削減を可能としています。

特長

- (1)SAG補正端子付き
- (2)75Ωドライバは3系統ドライブ可能
- (3)4次のローパスフィルタ内蔵

f特:6.75MHz 0±1dB/27MHz-27dB min. (コンポーネント回路部は2系統) 13.5MHz 1±1dB/54MHz-24dB min.

- (4)6dBアンプ内蔵
- (5)パワーセーブ機能内蔵
- (6) S/N = 80 dB typ. (Y/C mix : 74 dB typ.)
- (7) 気中放電にて±15kVのESD保護耐圧(IEC規格)
- (8) コンポーネント回路部は制御端子によりRGB信号への対応が可能


パッケージ

SSOP-34A

用途

- (1) プログレッシブ映像対応DVDプレーヤ
- (2) デジタルSTB
- (3)その他のデジタル映像機器

ブロック図

端子接続図

SSOP-34A

1	Vcc1	18	CrSAG
2	Cin	19	Стоит
3	MUTE1	20	GND2
4	$ m V_{IN}$	21	CbSAG
5	YC MIX	22	Своит
6	$ m Y_{IN}$	23	GND2
7	BIAS	24	CYSAG
8	GND1	25	СҮоит
9	NC	26	GND2
10	GND1	27	YSAG
11	NC	28	Yout
12	CY_{IN}	29	GND2
13	CLP	30	VSAG
14	Cbin	31	Vout
15	MUTE2	32	GND2
16	Crin	33	Соит
17	GND2	34	Vcc2

端子説明

ピンNo.	端子名	機能	内部等価回路図
1	Vcc1	Vcc	
34	Vcc2		
2	Cin	クロマ入力	Vcc yog1 yog1 Tog1
3	MUTE1	ミュート選択	Vcc
15	MUTE2		1 255 1 25 1 25 1 25 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
		Using of MUTE and POWER – SAVING.	200 200 3 15 QND
4 6	V _{IN} Y _{IN}	映像入力 (コンポンット or Y)	Vcc
		Input clamp: Sync tip	4 6 J J J J J J J J J J J J J J J J J J
5	YC MIX	YCミックス選択	Vcc 20k 1.4V 5 7 1.4V

端子説明

ピンNo.	端子名	機能	内部等価回路図
7	BIAS	バイアス	Vcc 7 1000 100
8 10 17 20 23 26 29 32	GND1 GND1 GND2 GND2 GND2 GND2 GND2 GND2	GND	
9	NC	NC	// X
11	NC	NC	
12	CYIN	輝度入力 The input can select Sync tip clamp or Bias.	Vcc
13	CLP	入力クランプ選択	200 13 13 1,4V
14 16	Cbin Crin	色差入力	Vcc 14

端子説明

ピンNo.	端子名	機能	内部等価回路図
18	Стоит	信号出力	Vcc
21	Своит		
24	СҮоит		
27	Y_{OUT}		19 22 22 25 18 31 35
30	V_{OUT}		18 31 NN
			27
19	CrSAG	サグ補正	
22	CbSAG		
25	CYSAG		
28	YSAG		GND
31	VSAG		GND
33	Cout	クロマ出力	
			│
			33
			GND

最大定格

(Ta=25℃)

項目	記号	定 格	単 位
保存温度	Tstg	-65∼+150	${\mathbb C}$
動作温度	Topr	-40∼+85	${\mathbb C}$
電源電圧	Vcc max.	7	V
許 容 損 失 ※ 1	Pd	1.4	W

注:※1 基板実装時の許容損失です。実装基板サイズ100×100×1.6mm

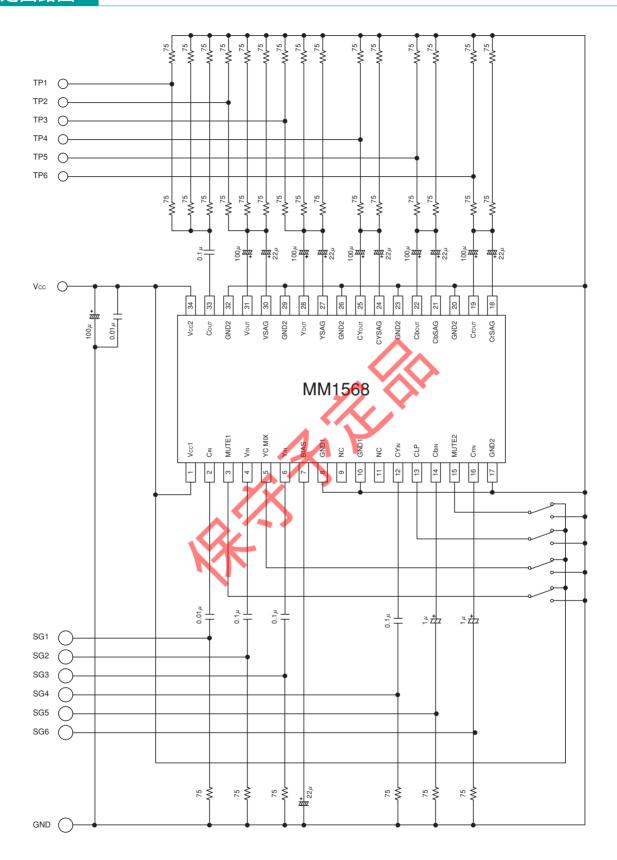
推奨動作条件

項目	記 号	定 格	単 位
動 作 温 度	Topr	-40∼+85	${\mathbb C}$
動作電圧	Vccop	4.5~5.5	V

電気的特性 (特記なき場合Ta=25℃、Vcc=5V)

項目		記号	測定条件	最小	標準	最大	単位
		Icc1	無信号	74	97	126	mA
消費電流		Icc2	無信号 MUTE1:ON	36	51	66	mA
// // // // // // // // // // // // //		Icc3	無信号 MUTE2:ON	39	55	71	mA
		Icc4	無信号 MUTE1 and MUTE2: ON	1	3	5	mA
クロマ入力		Vcin		1.9	2.4	2.9	V
コンポジットビデオ入力	J	$V_{ m VIN}$		1.15	1.4	1.65	V
輝度入力		Vyin, cyin		1.15	1.4	1.65	V
色差入力		VCbIN, CrIN		1.9	2.4	2.9	V
クロマ出力		Vcout			2.4		V
コンポジットビデオ出力	J	Vvout			1.1		V
輝度出力		Vyout, cyout			1.1		V
色差出力		VCbOUT, CrOUT			2.4		V
制御端子入力電流	Н	I⊞m ※ 2				350	μA
叩呼們了八刀电机	L	IILm ※2				35	μA
制御端子入力電圧	Н	Vth _{Hm} ※2		2.1			V
即呼徊」八刀电压	L	Vth _{Lm} ※2				0.7	V
入力インピーダンス		ZCIN, CbIN, CrIN	^ .	100	150	200	kΩ
電圧利得		G12,3,5,6 % 3	SIN wave: 1V f=100kHz	5.7	6.0	6.3	dB
モエい 付		G21,4,7,8 ※ 3	SIN wave 1V f=100kHz	5.7	6.0	6.3	dB
		f11~5 ※ 3	SIN wave 11 6.75MHz/100kHz	-1.0	0	1.0	dB
		f21~5 ※ 3	SIN wave 1V 27MHz/100kHz		-40	-27	dB
周波数特性		f36 ※ 3	SIN wave: 1V 13.5MHz/100kHz	0	1.0	2.0	dB
		f47,8 ※ 3	SIN wave: 0.7V 13.5MHz/100kHz		1.0	2.0	dB
		f56~8 ※ 3	SIN wave: 1V 54MHz/100kHz		-40	-24	dB
微分利得		DG1~3 % 3	Staircase signal 1V		0.6	1.0	%
微分位相		DP1~3 % 3	Staircase signal 1V		0.6	1.0	0
出力ダイナミックレンシ	;	DR _n ×3	SIN wave: 100kHz THD=1.0%	2.6	3.0		V
クロストーク		CTn×3	f=4.43MHz, 1V		-60	-55	dB
		SN14~5 ※ 3	BW∶100k∼6MHz		-80		dΒ
S/N		SN21~3 % 3	BW:100k~6MHz at MIX OUT		-74		dB
		SN36~8 ※ 3			-80		dB
群遅延時間		t1gd1~5 ※ 3	at 100kHz		50		ns
47.生类时间		t2gd6~8 ※ 3	at 100kHz (コンポーネント)		30		ns
群遅延時間偏差		⊿t1 _{GDn} ※3	to 3.58MHz		4		ns
		⊿t2 _{GDn} ※3	to 4.43MHz		7		ns
		⊿t3gd1~5 ※ 3	to 6MHz		12		ns
		⊿t4gd6~8 ※ 3	to 6MHz(コンポーネント)		4		ns
		⊿t5gd6~8 ※ 3	to 12MHz(コンポーネント)		12		ns

注:※2 添え数"m"は右表の端子を表す。

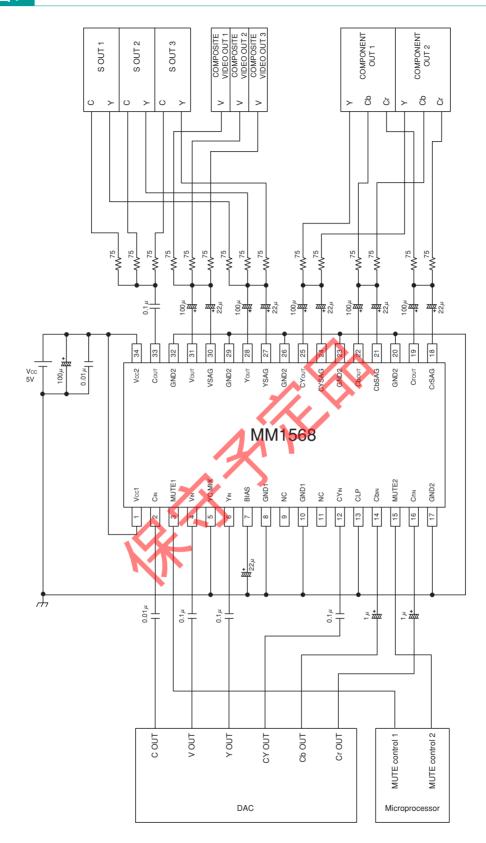

注:※3 添え数"n"は下表の組み合わせを表す。

n	入力	出力
1	Cin	
2	$ m V_{IN}$	V_{OUT}
3	Yin	
4	Cin	Соит

m	端子
1	MUTE1
2	MUTE2
3	YC MIX
4	CLP

n	入力	出力
5	$Y_{\rm IN}$	Yout
6	CYIN	СҮоит
7	Cbin	Своит
8	Crin	Стоит

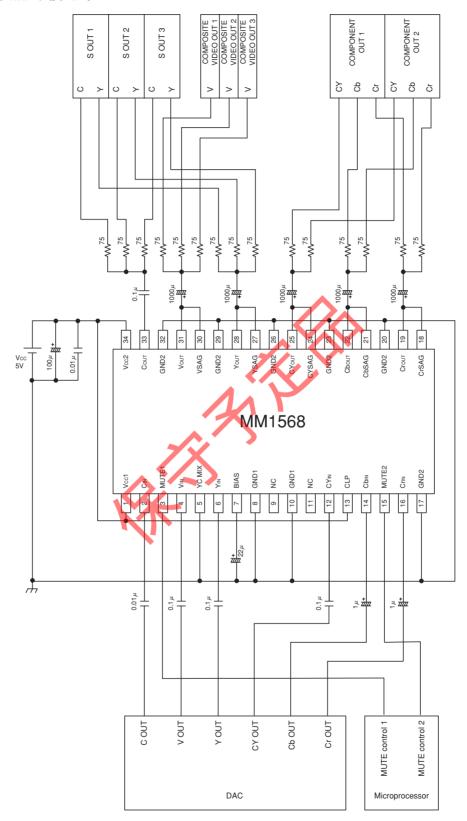
測定回路図



スイッチ制御表

入力選択	山土地フ	制御端子			
八刀选扒	出力端子	MUTE1	YC MIX	MUTE2	CLP
MUTE	0	Low	*	*	*
CIN	Cout	High	*	*	*
MUTE		Low	*	*	*
Y _{IN} + C _{IN}	Vout	TT!1-	Low	*	*
Vin		High	High	*	*
MUTE	X7.	Low	*	*	*
Yin	Y_{OUT}	High	*	*	*
MUTE		*	*	Low	*
CY _{IN} (Clamp)	CYOUT	*	*	TT' .1	Low
CYIN (Bias)		*	*	High	High
MUTE	Cl	*	*	Low	*
Cbin	Cbout	*	*	High	*
MUTE	C	*	*	Low	*
Crin	Crout	*	*	High	*

*:指定なし


応用回路図1

注:基板設計の際には、電源のバイパスコンデンサはVcc2端子(34 PIN)のできるだけ近くに配置して下さい。

応用回路図2

■ SAG補正機能 未使用時

注:基板設計の際には、電源のバイパスコンデンサはVcc2端子(34 PIN)のできるだけ近くに配置して下さい。